BLIP-Diffusion¶
BLIP-Diffusion was proposed in BLIP-Diffusion: Pre-trained Subject Representation for Controllable Text-to-Image Generation and Editing. It enables zero-shot subject-driven generation and control-guided zero-shot generation.
The abstract from the paper is:
Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications. Project page at this https URL.
The original codebase can be found at salesforce/LAVIS. You can find the official BLIP-Diffusion checkpoints under the hf.co/SalesForce organization.
BlipDiffusionPipeline
and BlipDiffusionControlNetPipeline
were contributed by ayushtues
.
Tip
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
mindone.diffusers.pipelines.BlipDiffusionPipeline
¶
Bases: DiffusionPipeline
Pipeline for Zero-Shot Subject Driven Generation using Blip Diffusion.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
Tokenizer for the text encoder
TYPE:
|
text_encoder |
Text encoder to encode the text prompt
TYPE:
|
vae |
VAE model to map the latents to the image
TYPE:
|
unet |
Conditional U-Net architecture to denoise the image embedding.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
qformer |
QFormer model to get multi-modal embeddings from the text and image.
TYPE:
|
image_processor |
Image Processor to preprocess and postprocess the image.
TYPE:
|
ctx_begin_pos |
Position of the context token in the text encoder.
TYPE:
|
Source code in mindone/diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
mindone.diffusers.pipelines.BlipDiffusionPipeline.__call__(prompt, reference_image, source_subject_category, target_subject_category, latents=None, guidance_scale=7.5, height=512, width=512, num_inference_steps=50, generator=None, neg_prompt='', prompt_strength=1.0, prompt_reps=20, output_type='pil', return_dict=False)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
reference_image |
The reference image to condition the generation on.
TYPE:
|
source_subject_category |
The source subject category.
TYPE:
|
target_subject_category |
The target subject category.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by random sampling.
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
height |
The height of the generated image.
TYPE:
|
width |
The width of the generated image.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
One or a list of np.random.Generator(s) to make generation deterministic.
TYPE:
|
neg_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_strength |
The strength of the prompt. Specifies the number of times the prompt is repeated along with prompt_reps to amplify the prompt.
TYPE:
|
prompt_reps |
The number of times the prompt is repeated along with prompt_strength to amplify the prompt.
TYPE:
|
output_type |
The output format of the generate image. Choose between:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
mindone.diffusers.pipelines.BlipDiffusionControlNetPipeline
¶
Bases: DiffusionPipeline
Pipeline for Canny Edge based Controlled subject-driven generation using Blip Diffusion.
This model inherits from [DiffusionPipeline
]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
Tokenizer for the text encoder
TYPE:
|
text_encoder |
Text encoder to encode the text prompt
TYPE:
|
vae |
VAE model to map the latents to the image
TYPE:
|
unet |
Conditional U-Net architecture to denoise the image embedding.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
qformer |
QFormer model to get multi-modal embeddings from the text and image.
TYPE:
|
controlnet |
ControlNet model to get the conditioning image embedding.
TYPE:
|
image_processor |
Image Processor to preprocess and postprocess the image.
TYPE:
|
ctx_begin_pos |
Position of the context token in the text encoder.
TYPE:
|
Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|
mindone.diffusers.pipelines.BlipDiffusionControlNetPipeline.__call__(prompt, reference_image, condtioning_image, source_subject_category, target_subject_category, latents=None, guidance_scale=7.5, height=512, width=512, num_inference_steps=50, generator=None, neg_prompt='', prompt_strength=1.0, prompt_reps=20, output_type='pil', return_dict=False)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation.
TYPE:
|
reference_image |
The reference image to condition the generation on.
TYPE:
|
condtioning_image |
The conditioning canny edge image to condition the generation on.
TYPE:
|
source_subject_category |
The source subject category.
TYPE:
|
target_subject_category |
The target subject category.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by random sampling.
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
height |
The height of the generated image.
TYPE:
|
width |
The width of the generated image.
TYPE:
|
seed |
The seed to use for random generation.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
generator |
One or a list of torch generator(s) to make generation deterministic.
TYPE:
|
neg_prompt |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if
TYPE:
|
prompt_strength |
The strength of the prompt. Specifies the number of times the prompt is repeated along with prompt_reps to amplify the prompt.
TYPE:
|
prompt_reps |
The number of times the prompt is repeated along with prompt_strength to amplify the prompt.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
|