Skip to content

AuraFlow

AuraFlow is inspired by Stable Diffusion 3 and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the GenEval benchmark.

It was developed by the Fal team and more details about it can be found in this blog post.

Tip

AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details.

mindone.diffusers.pipelines.AuraFlowPipeline

Bases: DiffusionPipeline

PARAMETER DESCRIPTION
tokenizer

Tokenizer of class T5Tokenizer.

TYPE: `T5TokenizerFast`

text_encoder

Frozen text-encoder. AuraFlow uses T5, specifically the EleutherAI/pile-t5-xl variant.

TYPE: [`T5EncoderModel`]

vae

Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

TYPE: [`AutoencoderKL`]

transformer

Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.

TYPE: [`AuraFlowTransformer2DModel`]

scheduler

A scheduler to be used in combination with transformer to denoise the encoded image latents.

TYPE: [`FlowMatchEulerDiscreteScheduler`]

Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
class AuraFlowPipeline(DiffusionPipeline):
    r"""
    Args:
        tokenizer (`T5TokenizerFast`):
            Tokenizer of class
            [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
        text_encoder ([`T5EncoderModel`]):
            Frozen text-encoder. AuraFlow uses
            [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
            [EleutherAI/pile-t5-xl](https://huggingface.co/EleutherAI/pile-t5-xl) variant.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        transformer ([`AuraFlowTransformer2DModel`]):
            Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
    """

    _optional_components = []
    model_cpu_offload_seq = "text_encoder->transformer->vae"

    def __init__(
        self,
        tokenizer: T5Tokenizer,
        text_encoder: UMT5EncoderModel,
        vae: AutoencoderKL,
        transformer: AuraFlowTransformer2DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
        )

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
                raise ValueError(
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
                    f" {negative_prompt_attention_mask.shape}."
                )

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Union[str, List[str]] = None,
        do_classifier_free_guidance: bool = True,
        num_images_per_prompt: int = 1,
        prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        max_sequence_length: int = 256,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        max_length = max_sequence_length
        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                truncation=True,
                max_length=max_length,
                padding="max_length",
                return_tensors="np",
            )
            text_inputs = {key: value for key, value in text_inputs.items()}
            text_input_ids = text_inputs["input_ids"]
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
                logger.warning(
                    "The following part of your input was truncated because T5 can only handle sequences up to"
                    f" {max_length} tokens: {removed_text}"
                )

            text_inputs = {k: ms.Tensor(v) for k, v in text_inputs.items()}
            prompt_embeds = self.text_encoder(**text_inputs)[0]
            prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).broadcast_to(prompt_embeds.shape)
            prompt_embeds = prompt_embeds * prompt_attention_mask

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        elif self.transformer is not None:
            dtype = self.transformer.dtype
        else:
            dtype = None

        prompt_embeds = prompt_embeds.to(dtype=dtype)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
        prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                truncation=True,
                max_length=max_length,
                padding="max_length",
                return_tensors="np",
            )
            uncond_input = {k: ms.Tensor(v) for k, v in uncond_input.items()}
            negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
            negative_prompt_attention_mask = (
                uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
            )
            negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

            negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
            negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))
        else:
            negative_prompt_embeds = None
            negative_prompt_attention_mask = None

        return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        generator,
        latents=None,
    ):
        if latents is not None:
            return latents.to(dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, dtype=dtype)

        return latents

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae
    def upcast_vae(self):
        self.vae.to(dtype=ms.float32)

    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Union[str, List[str]] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        height: Optional[int] = 1024,
        width: Optional[int] = 1024,
        generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
        latents: Optional[ms.Tensor] = None,
        prompt_embeds: Optional[ms.Tensor] = None,
        prompt_attention_mask: Optional[ms.Tensor] = None,
        negative_prompt_embeds: Optional[ms.Tensor] = None,
        negative_prompt_attention_mask: Optional[ms.Tensor] = None,
        max_sequence_length: int = 256,
        output_type: Optional[str] = "pil",
        return_dict: bool = False,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image. This is set to 1024 by default for best results.
            width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image. This is set to 1024 by default for best results.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
                `num_inference_steps` and `timesteps` must be `None`.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
                One or a list of [numpy generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
                to make generation deterministic.
            latents (`ms.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            prompt_attention_mask (`ms.Tensor`, *optional*):
                Pre-generated attention mask for text embeddings.
            negative_prompt_embeds (`ms.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_prompt_attention_mask (`ms.Tensor`, *optional*):
                Pre-generated attention mask for negative text embeddings.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.

        Examples:

        Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
            If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
            where the first element is a list with the generated images.
        """
        # 1. Check inputs. Raise error if not correct
        height = height or self.transformer.config.sample_size * self.vae_scale_factor
        width = width or self.transformer.config.sample_size * self.vae_scale_factor

        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        )

        # 2. Determine batch size.
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            negative_prompt=negative_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            num_images_per_prompt=num_images_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            max_sequence_length=max_sequence_length,
        )
        if do_classifier_free_guidance:
            prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds], axis=0)

        # 4. Prepare timesteps

        # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, sigmas)

        # 5. Prepare latents.
        latent_channels = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            latent_channels,
            height,
            width,
            prompt_embeds.dtype,
            generator,
            latents,
        )

        # 6. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents

                # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = ms.Tensor(t / 1000).broadcast_to((latent_model_input.shape[0],))
                timestep = timestep.to(dtype=latents.dtype)

                # predict noise model_output
                noise_pred = self.transformer(
                    latent_model_input,
                    encoder_hidden_states=prompt_embeds,
                    timestep=timestep,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

        if output_type == "latent":
            image = latents
        else:
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == ms.float16 and self.vae.config.force_upcast
            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.get_parameters())).dtype)
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)

mindone.diffusers.pipelines.AuraFlowPipeline.__call__(prompt=None, negative_prompt=None, num_inference_steps=50, timesteps=None, sigmas=None, guidance_scale=3.5, num_images_per_prompt=1, height=1024, width=1024, generator=None, latents=None, prompt_embeds=None, prompt_attention_mask=None, negative_prompt_embeds=None, negative_prompt_attention_mask=None, max_sequence_length=256, output_type='pil', return_dict=False)

Function invoked when calling the pipeline for generation.

PARAMETER DESCRIPTION
prompt

The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

negative_prompt

The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

height

The height in pixels of the generated image. This is set to 1024 by default for best results.

TYPE: `int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor DEFAULT: 1024

width

The width in pixels of the generated image. This is set to 1024 by default for best results.

TYPE: `int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor DEFAULT: 1024

num_inference_steps

The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

TYPE: `int`, *optional*, defaults to 50 DEFAULT: 50

sigmas

Custom sigmas used to override the timestep spacing strategy of the scheduler. If sigmas is passed, num_inference_steps and timesteps must be None.

TYPE: `List[float]`, *optional* DEFAULT: None

timesteps

Custom timesteps to use for the denoising process with schedulers which support a timesteps argument in their set_timesteps method. If not defined, the default behavior when num_inference_steps is passed will be used. Must be in descending order.

TYPE: `List[int]`, *optional* DEFAULT: None

guidance_scale

Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

TYPE: `float`, *optional*, defaults to 5.0 DEFAULT: 3.5

num_images_per_prompt

The number of images to generate per prompt.

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

generator

One or a list of numpy generator(s) to make generation deterministic.

TYPE: `np.random.Generator` or `List[np.random.Generator]`, *optional* DEFAULT: None

latents

Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Pre-generated attention mask for text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Pre-generated attention mask for negative text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

output_type

The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.

TYPE: `str`, *optional*, defaults to `"pil"` DEFAULT: 'pil'

return_dict

Whether or not to return a [~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: False

max_sequence_length

Maximum sequence length to use with the prompt.

TYPE: `int` defaults to 256 DEFAULT: 256

[`~PIPELINES.IMAGEPIPELINEOUTPUT`] OR `TUPLE` DESCRIPTION
Union[ImagePipelineOutput, Tuple]

If return_dict is True, [~pipelines.ImagePipelineOutput] is returned, otherwise a tuple is returned

Union[ImagePipelineOutput, Tuple]

where the first element is a list with the generated images.

Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
def __call__(
    self,
    prompt: Union[str, List[str]] = None,
    negative_prompt: Union[str, List[str]] = None,
    num_inference_steps: int = 50,
    timesteps: List[int] = None,
    sigmas: List[float] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    height: Optional[int] = 1024,
    width: Optional[int] = 1024,
    generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
    latents: Optional[ms.Tensor] = None,
    prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    max_sequence_length: int = 256,
    output_type: Optional[str] = "pil",
    return_dict: bool = False,
) -> Union[ImagePipelineOutput, Tuple]:
    r"""
    Function invoked when calling the pipeline for generation.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            instead.
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt or prompts not to guide the image generation. If not defined, one has to pass
            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
            less than `1`).
        height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
            The height in pixels of the generated image. This is set to 1024 by default for best results.
        width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
            The width in pixels of the generated image. This is set to 1024 by default for best results.
        num_inference_steps (`int`, *optional*, defaults to 50):
            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
            expense of slower inference.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.
        timesteps (`List[int]`, *optional*):
            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
            passed will be used. Must be in descending order.
        guidance_scale (`float`, *optional*, defaults to 5.0):
            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
            `guidance_scale` is defined as `w` of equation 2. of [Imagen
            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
            usually at the expense of lower image quality.
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            The number of images to generate per prompt.
        generator (`np.random.Generator` or `List[np.random.Generator]`, *optional*):
            One or a list of [numpy generator(s)](https://numpy.org/doc/stable/reference/random/generator.html)
            to make generation deterministic.
        latents (`ms.Tensor`, *optional*):
            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
            tensor will ge generated by sampling using the supplied random `generator`.
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Pre-generated attention mask for text embeddings.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
            argument.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Pre-generated attention mask for negative text embeddings.
        output_type (`str`, *optional*, defaults to `"pil"`):
            The output format of the generate image. Choose between
            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
            of a plain tuple.
        max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.

    Examples:

    Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`:
        If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned
        where the first element is a list with the generated images.
    """
    # 1. Check inputs. Raise error if not correct
    height = height or self.transformer.config.sample_size * self.vae_scale_factor
    width = width or self.transformer.config.sample_size * self.vae_scale_factor

    self.check_inputs(
        prompt,
        height,
        width,
        negative_prompt,
        prompt_embeds,
        negative_prompt_embeds,
        prompt_attention_mask,
        negative_prompt_attention_mask,
    )

    # 2. Determine batch size.
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    do_classifier_free_guidance = guidance_scale > 1.0

    # 3. Encode input prompt
    (
        prompt_embeds,
        prompt_attention_mask,
        negative_prompt_embeds,
        negative_prompt_attention_mask,
    ) = self.encode_prompt(
        prompt=prompt,
        negative_prompt=negative_prompt,
        do_classifier_free_guidance=do_classifier_free_guidance,
        num_images_per_prompt=num_images_per_prompt,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        prompt_attention_mask=prompt_attention_mask,
        negative_prompt_attention_mask=negative_prompt_attention_mask,
        max_sequence_length=max_sequence_length,
    )
    if do_classifier_free_guidance:
        prompt_embeds = ops.cat([negative_prompt_embeds, prompt_embeds], axis=0)

    # 4. Prepare timesteps

    # sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, timesteps, sigmas)

    # 5. Prepare latents.
    latent_channels = self.transformer.config.in_channels
    latents = self.prepare_latents(
        batch_size * num_images_per_prompt,
        latent_channels,
        height,
        width,
        prompt_embeds.dtype,
        generator,
        latents,
    )

    # 6. Denoising loop
    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        for i, t in enumerate(timesteps):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = ops.cat([latents] * 2) if do_classifier_free_guidance else latents

            # aura use timestep value between 0 and 1, with t=1 as noise and t=0 as the image
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = ms.Tensor(t / 1000).broadcast_to((latent_model_input.shape[0],))
            timestep = timestep.to(dtype=latents.dtype)

            # predict noise model_output
            noise_pred = self.transformer(
                latent_model_input,
                encoder_hidden_states=prompt_embeds,
                timestep=timestep,
                return_dict=False,
            )[0]

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            # call the callback, if provided
            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                progress_bar.update()

    if output_type == "latent":
        image = latents
    else:
        # make sure the VAE is in float32 mode, as it overflows in float16
        needs_upcasting = self.vae.dtype == ms.float16 and self.vae.config.force_upcast
        if needs_upcasting:
            self.upcast_vae()
            latents = latents.to(next(iter(self.vae.post_quant_conv.get_parameters())).dtype)
        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    if not return_dict:
        return (image,)

    return ImagePipelineOutput(images=image)

mindone.diffusers.pipelines.AuraFlowPipeline.encode_prompt(prompt, negative_prompt=None, do_classifier_free_guidance=True, num_images_per_prompt=1, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, max_sequence_length=256)

Encodes the prompt into text encoder hidden states.

PARAMETER DESCRIPTION
prompt

prompt to be encoded

TYPE: `str` or `List[str]`, *optional*

negative_prompt

The prompt not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

TYPE: `str` or `List[str]`, *optional* DEFAULT: None

do_classifier_free_guidance

whether to use classifier free guidance or not

TYPE: `bool`, *optional*, defaults to `True` DEFAULT: True

num_images_per_prompt

number of images that should be generated per prompt

TYPE: `int`, *optional*, defaults to 1 DEFAULT: 1

prompt_embeds

Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

prompt_attention_mask

Pre-generated attention mask for text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_embeds

Pre-generated negative text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

negative_prompt_attention_mask

Pre-generated attention mask for negative text embeddings.

TYPE: `ms.Tensor`, *optional* DEFAULT: None

max_sequence_length

Maximum sequence length to use for the prompt.

TYPE: `int`, defaults to 256 DEFAULT: 256

Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def encode_prompt(
    self,
    prompt: Union[str, List[str]],
    negative_prompt: Union[str, List[str]] = None,
    do_classifier_free_guidance: bool = True,
    num_images_per_prompt: int = 1,
    prompt_embeds: Optional[ms.Tensor] = None,
    negative_prompt_embeds: Optional[ms.Tensor] = None,
    prompt_attention_mask: Optional[ms.Tensor] = None,
    negative_prompt_attention_mask: Optional[ms.Tensor] = None,
    max_sequence_length: int = 256,
):
    r"""
    Encodes the prompt into text encoder hidden states.

    Args:
        prompt (`str` or `List[str]`, *optional*):
            prompt to be encoded
        negative_prompt (`str` or `List[str]`, *optional*):
            The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
            instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
        do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
            whether to use classifier free guidance or not
        num_images_per_prompt (`int`, *optional*, defaults to 1):
            number of images that should be generated per prompt
        prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
            provided, text embeddings will be generated from `prompt` input argument.
        prompt_attention_mask (`ms.Tensor`, *optional*):
            Pre-generated attention mask for text embeddings.
        negative_prompt_embeds (`ms.Tensor`, *optional*):
            Pre-generated negative text embeddings.
        negative_prompt_attention_mask (`ms.Tensor`, *optional*):
            Pre-generated attention mask for negative text embeddings.
        max_sequence_length (`int`, defaults to 256): Maximum sequence length to use for the prompt.
    """
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    max_length = max_sequence_length
    if prompt_embeds is None:
        text_inputs = self.tokenizer(
            prompt,
            truncation=True,
            max_length=max_length,
            padding="max_length",
            return_tensors="np",
        )
        text_inputs = {key: value for key, value in text_inputs.items()}
        text_input_ids = text_inputs["input_ids"]
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="np").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not np.array_equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because T5 can only handle sequences up to"
                f" {max_length} tokens: {removed_text}"
            )

        text_inputs = {k: ms.Tensor(v) for k, v in text_inputs.items()}
        prompt_embeds = self.text_encoder(**text_inputs)[0]
        prompt_attention_mask = text_inputs["attention_mask"].unsqueeze(-1).broadcast_to(prompt_embeds.shape)
        prompt_embeds = prompt_embeds * prompt_attention_mask

    if self.text_encoder is not None:
        dtype = self.text_encoder.dtype
    elif self.transformer is not None:
        dtype = self.transformer.dtype
    else:
        dtype = None

    prompt_embeds = prompt_embeds.to(dtype=dtype)

    bs_embed, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.tile((1, num_images_per_prompt, 1))
    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
    prompt_attention_mask = prompt_attention_mask.reshape(bs_embed, -1)
    prompt_attention_mask = prompt_attention_mask.tile((num_images_per_prompt, 1))

    # get unconditional embeddings for classifier free guidance
    if do_classifier_free_guidance and negative_prompt_embeds is None:
        negative_prompt = negative_prompt or ""
        uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
        max_length = prompt_embeds.shape[1]
        uncond_input = self.tokenizer(
            uncond_tokens,
            truncation=True,
            max_length=max_length,
            padding="max_length",
            return_tensors="np",
        )
        uncond_input = {k: ms.Tensor(v) for k, v in uncond_input.items()}
        negative_prompt_embeds = self.text_encoder(**uncond_input)[0]
        negative_prompt_attention_mask = (
            uncond_input["attention_mask"].unsqueeze(-1).expand(negative_prompt_embeds.shape)
        )
        negative_prompt_embeds = negative_prompt_embeds * negative_prompt_attention_mask

    if do_classifier_free_guidance:
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype)

        negative_prompt_embeds = negative_prompt_embeds.tile((1, num_images_per_prompt, 1))
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        negative_prompt_attention_mask = negative_prompt_attention_mask.reshape(bs_embed, -1)
        negative_prompt_attention_mask = negative_prompt_attention_mask.tile((num_images_per_prompt, 1))
    else:
        negative_prompt_embeds = None
        negative_prompt_attention_mask = None

    return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask