AuraFlow¶
AuraFlow is inspired by Stable Diffusion 3 and is by far the largest text-to-image generation model that comes with an Apache 2.0 license. This model achieves state-of-the-art results on the GenEval benchmark.
It was developed by the Fal team and more details about it can be found in this blog post.
Tip
AuraFlow can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details.
mindone.diffusers.pipelines.AuraFlowPipeline
¶
Bases: DiffusionPipeline
PARAMETER | DESCRIPTION |
---|---|
tokenizer |
Tokenizer of class T5Tokenizer.
TYPE:
|
text_encoder |
Frozen text-encoder. AuraFlow uses T5, specifically the EleutherAI/pile-t5-xl variant.
TYPE:
|
vae |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
TYPE:
|
transformer |
Conditional Transformer (MMDiT and DiT) architecture to denoise the encoded image latents.
TYPE:
|
scheduler |
A scheduler to be used in combination with
TYPE:
|
Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
|
mindone.diffusers.pipelines.AuraFlowPipeline.__call__(prompt=None, negative_prompt=None, num_inference_steps=50, timesteps=None, sigmas=None, guidance_scale=3.5, num_images_per_prompt=1, height=1024, width=1024, generator=None, latents=None, prompt_embeds=None, prompt_attention_mask=None, negative_prompt_embeds=None, negative_prompt_attention_mask=None, max_sequence_length=256, output_type='pil', return_dict=False)
¶
Function invoked when calling the pipeline for generation.
PARAMETER | DESCRIPTION |
---|---|
prompt |
The prompt or prompts to guide the image generation. If not defined, one has to pass
TYPE:
|
negative_prompt |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
TYPE:
|
height |
The height in pixels of the generated image. This is set to 1024 by default for best results.
TYPE:
|
width |
The width in pixels of the generated image. This is set to 1024 by default for best results.
TYPE:
|
num_inference_steps |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
TYPE:
|
sigmas |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If
TYPE:
|
timesteps |
Custom timesteps to use for the denoising process with schedulers which support a
TYPE:
|
guidance_scale |
Guidance scale as defined in Classifier-Free Diffusion Guidance.
TYPE:
|
num_images_per_prompt |
The number of images to generate per prompt.
TYPE:
|
generator |
One or a list of numpy generator(s) to make generation deterministic.
TYPE:
|
latents |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
prompt_attention_mask |
Pre-generated attention mask for text embeddings.
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt
weighting. If not provided, negative_prompt_embeds will be generated from
TYPE:
|
negative_prompt_attention_mask |
Pre-generated attention mask for negative text embeddings.
TYPE:
|
output_type |
The output format of the generate image. Choose between
PIL:
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
max_sequence_length |
Maximum sequence length to use with the
TYPE:
|
[`~PIPELINES.IMAGEPIPELINEOUTPUT`] OR `TUPLE` | DESCRIPTION |
---|---|
Union[ImagePipelineOutput, Tuple]
|
If |
Union[ImagePipelineOutput, Tuple]
|
where the first element is a list with the generated images. |
Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
|
mindone.diffusers.pipelines.AuraFlowPipeline.encode_prompt(prompt, negative_prompt=None, do_classifier_free_guidance=True, num_images_per_prompt=1, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, max_sequence_length=256)
¶
Encodes the prompt into text encoder hidden states.
PARAMETER | DESCRIPTION |
---|---|
prompt |
prompt to be encoded
TYPE:
|
negative_prompt |
The prompt not to guide the image generation. If not defined, one has to pass
TYPE:
|
do_classifier_free_guidance |
whether to use classifier free guidance or not
TYPE:
|
num_images_per_prompt |
number of images that should be generated per prompt
TYPE:
|
prompt_embeds |
Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not
provided, text embeddings will be generated from
TYPE:
|
prompt_attention_mask |
Pre-generated attention mask for text embeddings.
TYPE:
|
negative_prompt_embeds |
Pre-generated negative text embeddings.
TYPE:
|
negative_prompt_attention_mask |
Pre-generated attention mask for negative text embeddings.
TYPE:
|
max_sequence_length |
Maximum sequence length to use for the prompt.
TYPE:
|
Source code in mindone/diffusers/pipelines/aura_flow/pipeline_aura_flow.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|