Skip to content

Normalization layers

Customized normalization layers for supporting various models in 🤗 Diffusers.

mindone.diffusers.models.normalization.AdaLayerNorm

Bases: Cell

Norm layer modified to incorporate timestep embeddings.

PARAMETER DESCRIPTION
embedding_dim

The size of each embedding vector.

TYPE: `int`

num_embeddings

The size of the embeddings dictionary.

TYPE: `int`, *optional* DEFAULT: None

output_dim

TYPE: `int`, *optional* DEFAULT: None

norm_elementwise_affine

TYPE: `bool`, defaults to `False DEFAULT: False

norm_eps

TYPE: `bool`, defaults to `False` DEFAULT: 1e-05

chunk_dim

TYPE: `int`, defaults to `0` DEFAULT: 0

Source code in mindone/diffusers/models/normalization.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class AdaLayerNorm(nn.Cell):
    r"""
    Norm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`, *optional*): The size of the embeddings dictionary.
        output_dim (`int`, *optional*):
        norm_elementwise_affine (`bool`, defaults to `False):
        norm_eps (`bool`, defaults to `False`):
        chunk_dim (`int`, defaults to `0`):
    """

    def __init__(
        self,
        embedding_dim: int,
        num_embeddings: Optional[int] = None,
        output_dim: Optional[int] = None,
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-5,
        chunk_dim: int = 0,
    ):
        super().__init__()

        self.chunk_dim = chunk_dim
        output_dim = output_dim or embedding_dim * 2

        if num_embeddings is not None:
            self.emb = nn.Embedding(num_embeddings, embedding_dim)
        else:
            self.emb = None

        self.silu = nn.SiLU()
        self.linear = nn.Dense(embedding_dim, output_dim)
        self.norm = LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine)

    def construct(
        self, x: ms.Tensor, timestep: Optional[ms.Tensor] = None, temb: Optional[ms.Tensor] = None
    ) -> ms.Tensor:
        if self.emb is not None:
            temb = self.emb(timestep)

        temb = self.linear(self.silu(temb))

        if self.chunk_dim == 1:
            # This is a bit weird why we have the order of "shift, scale" here and "scale, shift" in the
            # other if-branch. This branch is specific to CogVideoX for now.
            shift, scale = temb.chunk(2, axis=1)
            shift = shift[:, None, :]
            scale = scale[:, None, :]
        else:
            scale, shift = temb.chunk(2, axis=0)

        x = self.norm(x) * (1 + scale) + shift
        return x

mindone.diffusers.models.normalization.AdaLayerNormZero

Bases: Cell

Norm layer adaptive layer norm zero (adaLN-Zero).

PARAMETER DESCRIPTION
embedding_dim

The size of each embedding vector.

TYPE: `int`

num_embeddings

The size of the embeddings dictionary.

TYPE: `int` DEFAULT: None

Source code in mindone/diffusers/models/normalization.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
class AdaLayerNormZero(nn.Cell):
    r"""
    Norm layer adaptive layer norm zero (adaLN-Zero).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
    """

    def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
        super().__init__()
        if num_embeddings is not None:
            self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
        else:
            self.emb = None

        self.silu = nn.SiLU()
        self.linear = nn.Dense(embedding_dim, 6 * embedding_dim, has_bias=bias)
        if norm_type == "layer_norm":
            self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
        elif norm_type == "fp32_layer_norm":
            self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
        else:
            raise ValueError(
                f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
            )

    def construct(
        self,
        x: ms.Tensor,
        timestep: Optional[ms.Tensor] = None,
        class_labels: Optional[ms.Tensor] = None,
        hidden_dtype=None,
        emb: Optional[ms.Tensor] = None,
    ) -> Tuple[ms.Tensor, ms.Tensor, ms.Tensor, ms.Tensor, ms.Tensor]:
        if self.emb is not None:
            emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, axis=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp

mindone.diffusers.models.normalization.AdaLayerNormSingle

Bases: Cell

Norm layer adaptive layer norm single (adaLN-single).

As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

PARAMETER DESCRIPTION
embedding_dim

The size of each embedding vector.

TYPE: `int`

use_additional_conditions

To use additional conditions for normalization or not.

TYPE: `bool` DEFAULT: False

Source code in mindone/diffusers/models/normalization.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
class AdaLayerNormSingle(nn.Cell):
    r"""
    Norm layer adaptive layer norm single (adaLN-single).

    As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """

    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
        super().__init__()

        self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
            embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
        )

        self.silu = nn.SiLU()
        self.linear = nn.Dense(embedding_dim, 6 * embedding_dim, has_bias=True)

    def construct(
        self,
        timestep: ms.Tensor,
        added_cond_kwargs: Optional[Dict[str, ms.Tensor]] = None,
        batch_size: Optional[int] = None,
        hidden_dtype=None,
    ) -> Tuple[ms.Tensor, ms.Tensor]:
        # No modulation happening here.
        embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
        return self.linear(self.silu(embedded_timestep)), embedded_timestep

mindone.diffusers.models.normalization.AdaGroupNorm

Bases: Cell

GroupNorm layer modified to incorporate timestep embeddings.

PARAMETER DESCRIPTION
embedding_dim

The size of each embedding vector.

TYPE: `int`

num_embeddings

The size of the embeddings dictionary.

TYPE: `int`

num_groups

The number of groups to separate the channels into.

TYPE: `int`

act_fn

The activation function to use.

TYPE: `str`, *optional*, defaults to `None` DEFAULT: None

eps

The epsilon value to use for numerical stability.

TYPE: `float`, *optional*, defaults to `1e-5` DEFAULT: 1e-05

Source code in mindone/diffusers/models/normalization.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
class AdaGroupNorm(nn.Cell):
    r"""
    GroupNorm layer modified to incorporate timestep embeddings.

    Parameters:
        embedding_dim (`int`): The size of each embedding vector.
        num_embeddings (`int`): The size of the embeddings dictionary.
        num_groups (`int`): The number of groups to separate the channels into.
        act_fn (`str`, *optional*, defaults to `None`): The activation function to use.
        eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability.
    """

    def __init__(
        self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
    ):
        super().__init__()
        self.num_groups = num_groups
        self.eps = eps

        if act_fn is None:
            self.act = None
        else:
            self.act = get_activation(act_fn)()

        self.linear = nn.Dense(embedding_dim, out_dim * 2)

    def construct(self, x: ms.Tensor, emb: ms.Tensor) -> ms.Tensor:
        if self.act:
            emb = self.act(emb)
        emb = self.linear(emb)
        emb = emb[:, :, None, None]
        scale, shift = emb.chunk(2, axis=1)

        x = group_norm(x, self.num_groups, None, None, self.eps)
        x = x * (1 + scale) + shift
        return x

mindone.diffusers.models.normalization.AdaLayerNormContinuous

Bases: Cell

Source code in mindone/diffusers/models/normalization.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
class AdaLayerNormContinuous(nn.Cell):
    def __init__(
        self,
        embedding_dim: int,
        conditioning_embedding_dim: int,
        # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
        # because the output is immediately scaled and shifted by the projected conditioning embeddings.
        # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
        # However, this is how it was implemented in the original code, and it's rather likely you should
        # set `elementwise_affine` to False.
        elementwise_affine=True,
        eps=1e-5,
        bias=True,
        norm_type="layer_norm",
    ):
        super().__init__()
        self.silu = nn.SiLU()
        self.linear = nn.Dense(conditioning_embedding_dim, embedding_dim * 2, has_bias=bias)
        if norm_type == "layer_norm":
            self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias=bias)
        elif norm_type == "rms_norm":
            self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
        else:
            raise ValueError(f"unknown norm_type {norm_type}")

    def construct(self, x: ms.Tensor, conditioning_embedding: ms.Tensor) -> ms.Tensor:
        # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
        emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
        scale, shift = ops.chunk(emb, 2, axis=1)
        x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
        return x

mindone.diffusers.models.normalization.LayerNorm

Bases: Cell

Applies Layer Normalization over a mini-batch of inputs.

This layer implements the operation as described in the paper Layer Normalization <https://arxiv.org/abs/1607.06450>__

.. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

The mean and standard-deviation are calculated over the last D dimensions, where D is the dimension of :attr:normalized_shape. For example, if :attr:normalized_shape is (3, 5) (a 2-dimensional shape), the mean and standard-deviation are computed over the last 2 dimensions of the input (i.e. input.mean((-2, -1))). :math:\gamma and :math:\beta are learnable affine transform parameters of :attr:normalized_shape if :attr:elementwise_affine is True. The standard-deviation is calculated via the biased estimator, equivalent to ops.var(input, unbiased=False).

.. note:: Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane with the :attr:affine option, Layer Normalization applies per-element scale and bias with :attr:elementwise_affine.

This layer uses statistics computed from input data in both training and evaluation modes.

PARAMETER DESCRIPTION
normalized_shape

input shape from an expected input of size

.. math:: [* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]

If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size.

TYPE: int or list

eps

a value added to the denominator for numerical stability. Default: 1e-5

DEFAULT: 1e-05

elementwise_affine

a boolean value that when set to True, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Default: True.

TYPE: bool DEFAULT: True

ATTRIBUTE DESCRIPTION
weight

the learnable weights of the module of shape :math:\text{normalized\_shape} when :attr:elementwise_affine is set to True. The values are initialized to 1.

bias

the learnable bias of the module of shape :math:\text{normalized\_shape} when :attr:elementwise_affine is set to True. The values are initialized to 0.

Shape
  • Input: :math:(N, *)
  • Output: :math:(N, *) (same shape as input)
>>> # NLP Example
>>> batch, sentence_length, embedding_dim = 20, 5, 10
>>> embedding = ops.randn(batch, sentence_length, embedding_dim)
>>> layer_norm = LayerNorm(embedding_dim)
>>> # Activate module
>>> layer_norm(embedding)
>>>
>>> # Image Example
>>> N, C, H, W = 20, 5, 10, 10
>>> input = ops.randn(N, C, H, W)
>>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
>>> # as shown in the image below
>>> layer_norm = LayerNorm([C, H, W])
>>> output = layer_norm(input)
Source code in mindone/diffusers/models/normalization.py
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
class LayerNorm(nn.Cell):
    r"""Applies Layer Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
    is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
    is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
    the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
    :math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
    :attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
    The standard-deviation is calculated via the biased estimator, equivalent to
    `ops.var(input, unbiased=False)`.

    .. note::
        Unlike Batch Normalization and Instance Normalization, which applies
        scalar scale and bias for each entire channel/plane with the
        :attr:`affine` option, Layer Normalization applies per-element scale and
        bias with :attr:`elementwise_affine`.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        normalized_shape (int or list): input shape from an expected input
            of size

            .. math::
                [* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
                    \times \ldots \times \text{normalized\_shape}[-1]]

            If a single integer is used, it is treated as a singleton list, and this module will
            normalize over the last dimension which is expected to be of that specific size.
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        elementwise_affine: a boolean value that when set to ``True``, this module
            has learnable per-element affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.

    Attributes:
        weight: the learnable weights of the module of shape
            :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
            The values are initialized to 1.
        bias:   the learnable bias of the module of shape
                :math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
                The values are initialized to 0.

    Shape:
        - Input: :math:`(N, *)`
        - Output: :math:`(N, *)` (same shape as input)

    Examples::

        >>> # NLP Example
        >>> batch, sentence_length, embedding_dim = 20, 5, 10
        >>> embedding = ops.randn(batch, sentence_length, embedding_dim)
        >>> layer_norm = LayerNorm(embedding_dim)
        >>> # Activate module
        >>> layer_norm(embedding)
        >>>
        >>> # Image Example
        >>> N, C, H, W = 20, 5, 10, 10
        >>> input = ops.randn(N, C, H, W)
        >>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
        >>> # as shown in the image below
        >>> layer_norm = LayerNorm([C, H, W])
        >>> output = layer_norm(input)
    """

    normalized_shape: Tuple[int, ...]
    eps: float
    elementwise_affine: bool

    def __init__(self, normalized_shape, eps=1e-5, elementwise_affine: bool = True, bias=True, dtype=ms.float32):
        super().__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        self.normalized_shape = tuple(normalized_shape)
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        _weight = np.ones(normalized_shape, dtype=ms.dtype_to_nptype(dtype))
        _bias = np.zeros(normalized_shape, dtype=ms.dtype_to_nptype(dtype))
        if self.elementwise_affine:
            self.weight = Parameter(ms.Tensor.from_numpy(_weight), name="weight")
            if bias:
                self.bias = Parameter(ms.Tensor.from_numpy(_bias), name="bias")
            else:
                self.bias = ms.Tensor.from_numpy(_bias)
        else:
            self.weight = ms.Tensor.from_numpy(_weight)
            self.bias = ms.Tensor.from_numpy(_bias)
        # TODO: In fact, we need -len(normalized_shape) instead of -1, but LayerNorm doesn't allow it.
        #  For positive axis, the ndim of input is needed. Put it in construct?
        self.layer_norm = ops.LayerNorm(-1, -1, epsilon=eps)

    def construct(self, x: Tensor):
        x, _, _ = self.layer_norm(x, self.weight.to(x.dtype), self.bias.to(x.dtype))
        return x

mindone.diffusers.models.normalization.GroupNorm

Bases: Cell

Applies Group Normalization over a mini-batch of inputs.

This layer implements the operation as described in the paper Group Normalization <https://arxiv.org/abs/1803.08494>__

.. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

The input channels are separated into :attr:num_groups groups, each containing num_channels / num_groups channels. :attr:num_channels must be divisible by :attr:num_groups. The mean and standard-deviation are calculated separately over the each group. :math:\gamma and :math:\beta are learnable per-channel affine transform parameter vectors of size :attr:num_channels if :attr:affine is True.

This layer uses statistics computed from input data in both training and evaluation modes.

PARAMETER DESCRIPTION
num_groups

number of groups to separate the channels into

TYPE: int

num_channels

number of channels expected in input

TYPE: int

eps

a value added to the denominator for numerical stability. Default: 1e-5

TYPE: float DEFAULT: 1e-05

affine

a boolean value that when set to True, this module has learnable per-channel affine parameters initialized to ones (for weights) and zeros (for biases). Default: True.

TYPE: bool DEFAULT: True

Shape
  • Input: :math:(N, C, *) where :math:C=\text{num\_channels}
  • Output: :math:(N, C, *) (same shape as input)
>>> input = ops.randn(20, 6, 10, 10)
>>> # Separate 6 channels into 3 groups
>>> m = GroupNorm(3, 6)
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
>>> m = GroupNorm(6, 6)
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
>>> m = GroupNorm(1, 6)
>>> # Activating the module
>>> output = m(input)
Source code in mindone/diffusers/models/normalization.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
class GroupNorm(nn.Cell):
    r"""Applies Group Normalization over a mini-batch of inputs.

    This layer implements the operation as described in
    the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__

    .. math::
        y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta

    The input channels are separated into :attr:`num_groups` groups, each containing
    ``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
    :attr:`num_groups`. The mean and standard-deviation are calculated
    separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
    per-channel affine transform parameter vectors of size :attr:`num_channels` if
    :attr:`affine` is ``True``.

    This layer uses statistics computed from input data in both training and
    evaluation modes.

    Args:
        num_groups (int): number of groups to separate the channels into
        num_channels (int): number of channels expected in input
        eps: a value added to the denominator for numerical stability. Default: 1e-5
        affine: a boolean value that when set to ``True``, this module
            has learnable per-channel affine parameters initialized to ones (for weights)
            and zeros (for biases). Default: ``True``.

    Shape:
        - Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
        - Output: :math:`(N, C, *)` (same shape as input)

    Examples::

        >>> input = ops.randn(20, 6, 10, 10)
        >>> # Separate 6 channels into 3 groups
        >>> m = GroupNorm(3, 6)
        >>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
        >>> m = GroupNorm(6, 6)
        >>> # Put all 6 channels into a single group (equivalent with LayerNorm)
        >>> m = GroupNorm(1, 6)
        >>> # Activating the module
        >>> output = m(input)
    """

    num_groups: int
    num_channels: int
    eps: float
    affine: bool

    def __init__(self, num_groups: int, num_channels: int, eps: float = 1e-5, affine: bool = True, dtype=ms.float32):
        super().__init__()
        if num_channels % num_groups != 0:
            raise ValueError("num_channels must be divisible by num_groups")

        self.num_groups = num_groups
        self.num_channels = num_channels
        self.eps = eps
        self.affine = affine
        weight = initializer("ones", num_channels, dtype=dtype)
        bias = initializer("zeros", num_channels, dtype=dtype)
        if self.affine:
            self.weight = Parameter(weight, name="weight")
            self.bias = Parameter(bias, name="bias")
        else:
            self.weight = None
            self.bias = None

    def construct(self, x: Tensor):
        if self.affine:
            x = group_norm(x, self.num_groups, self.weight.to(x.dtype), self.bias.to(x.dtype), self.eps)
        else:
            x = group_norm(x, self.num_groups, self.weight, self.bias, self.eps)
        return x

mindone.diffusers.models.normalization.RMSNorm

Bases: Cell

Source code in mindone/diffusers/models/normalization.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
class RMSNorm(nn.Cell):
    def __init__(self, dim, eps: float, elementwise_affine: bool = True):
        super().__init__()

        self.eps = eps

        if isinstance(dim, numbers.Integral):
            dim = (dim,)

        self.dim = dim

        if elementwise_affine:
            self.weight = ms.Parameter(ops.ones(dim), name="weight")
        else:
            self.weight = None

    def construct(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(ms.float32).pow(2).mean(-1, keep_dims=True)
        hidden_states = hidden_states * ops.rsqrt(variance + self.eps)

        if self.weight is not None:
            # convert into half-precision if necessary
            if self.weight.dtype in [ms.float16, ms.bfloat16]:
                hidden_states = hidden_states.to(self.weight.dtype)
            hidden_states = hidden_states * self.weight
        else:
            hidden_states = hidden_states.to(input_dtype)

        return hidden_states