PriorTransformer¶
The Prior Transformer was originally introduced in Hierarchical Text-Conditional Image Generation with CLIP Latents by Ramesh et al. It is used to predict CLIP image embeddings from CLIP text embeddings; image embeddings are predicted through a denoising diffusion process.
The abstract from the paper is:
Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. Moreover, the joint embedding space of CLIP enables language-guided image manipulations in a zero-shot fashion. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.
mindone.diffusers.PriorTransformer
¶
Bases: ModelMixin
, ConfigMixin
, UNet2DConditionLoadersMixin
, PeftAdapterMixin
A Prior Transformer model.
PARAMETER | DESCRIPTION |
---|---|
num_attention_heads |
The number of heads to use for multi-head attention.
TYPE:
|
attention_head_dim |
The number of channels in each head.
TYPE:
|
num_layers |
The number of layers of Transformer blocks to use.
TYPE:
|
embedding_dim |
The dimension of the model input
TYPE:
|
num_embeddings |
The number of embeddings of the model input
TYPE:
|
additional_embeddings |
The number of additional tokens appended to the
projected
TYPE:
|
dropout |
The dropout probability to use.
TYPE:
|
time_embed_act_fn |
The activation function to use to create timestep embeddings.
TYPE:
|
norm_in_type |
The normalization layer to apply on hidden states before
passing to Transformer blocks. Set it to
TYPE:
|
embedding_proj_norm_type |
The normalization layer to apply on the input
TYPE:
|
encoder_hid_proj_type |
The projection layer to apply on the input
TYPE:
|
added_emb_type |
Additional embeddings to condition the model.
Choose from
TYPE:
|
time_embed_dim |
The dimension of timestep embeddings.
If None, will be set to
TYPE:
|
embedding_proj_dim |
The dimension of
TYPE:
|
clip_embed_dim |
The dimension of the output. If None, will be set to
TYPE:
|
Source code in mindone/diffusers/models/transformers/prior_transformer.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
mindone.diffusers.PriorTransformer.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.PriorTransformer.construct(hidden_states, timestep, proj_embedding, encoder_hidden_states=None, attention_mask=None, return_dict=False)
¶
The [PriorTransformer
] forward method.
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
The currently predicted image embeddings.
TYPE:
|
timestep |
Current denoising step.
TYPE:
|
proj_embedding |
Projected embedding vector the denoising process is conditioned on.
TYPE:
|
encoder_hidden_states |
Hidden states of the text embeddings the denoising process is conditioned on.
TYPE:
|
attention_mask |
Text mask for the text embeddings.
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
[ |
Source code in mindone/diffusers/models/transformers/prior_transformer.py
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
|
mindone.diffusers.PriorTransformer.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
Parameters:
processor (dict
of AttentionProcessor
or only AttentionProcessor
):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all Attention
layers.
If processor
is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
Source code in mindone/diffusers/models/transformers/prior_transformer.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
mindone.diffusers.PriorTransformer.set_default_attn_processor()
¶
Disables custom attention processors and sets the default attention implementation.
Source code in mindone/diffusers/models/transformers/prior_transformer.py
223 224 225 226 227 228 229 230 231 232 233 234 |
|
mindone.diffusers.models.transformers.prior_transformer.PriorTransformerOutput
dataclass
¶
Bases: BaseOutput
The output of [PriorTransformer
].
PARAMETER | DESCRIPTION |
---|---|
predicted_image_embedding |
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
TYPE:
|
Source code in mindone/diffusers/models/transformers/prior_transformer.py
17 18 19 20 21 22 23 24 25 26 27 |
|