HunyuanDiT2DModel¶
A Diffusion Transformer model for 2D data from Hunyuan-DiT.
mindone.diffusers.HunyuanDiT2DModel
¶
Bases: ModelMixin
, ConfigMixin
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
PARAMETER | DESCRIPTION |
---|---|
num_attention_heads |
The number of heads to use for multi-head attention.
TYPE:
|
attention_head_dim |
The number of channels in each head.
TYPE:
|
in_channels |
The number of channels in the input and output (specify if the input is continuous).
TYPE:
|
patch_size |
The size of the patch to use for the input.
TYPE:
|
activation_fn |
Activation function to use in feed-forward.
TYPE:
|
sample_size |
The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings.
TYPE:
|
dropout |
The dropout probability to use.
TYPE:
|
cross_attention_dim |
The number of dimension in the clip text embedding.
TYPE:
|
hidden_size |
The size of hidden layer in the conditioning embedding layers.
TYPE:
|
num_layers |
The number of layers of Transformer blocks to use.
TYPE:
|
mlp_ratio |
The ratio of the hidden layer size to the input size.
TYPE:
|
learn_sigma |
Whether to predict variance.
TYPE:
|
cross_attention_dim_t5 |
The number dimensions in t5 text embedding.
TYPE:
|
pooled_projection_dim |
The size of the pooled projection.
TYPE:
|
text_len |
The length of the clip text embedding.
TYPE:
|
text_len_t5 |
The length of the T5 text embedding.
TYPE:
|
use_style_cond_and_image_meta_size |
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
TYPE:
|
Source code in mindone/diffusers/models/transformers/hunyuan_transformer_2d.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
mindone.diffusers.HunyuanDiT2DModel.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.HunyuanDiT2DModel.construct(hidden_states, timestep, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, controlnet_block_samples=None, return_dict=False)
¶
The [HunyuanDiT2DModel
] forward method.
hidden_states (ms.Tensor
of shape (batch size, dim, height, width)
):
The input tensor.
timestep ( ms.Tensor
, optional):
Used to indicate denoising step.
encoder_hidden_states ( ms.Tensor
of shape (batch size, sequence len, embed dims)
, optional):
Conditional embeddings for cross attention layer. This is the output of BertModel
.
text_embedding_mask: ms.Tensor
An attention mask of shape (batch, key_tokens)
is applied to encoder_hidden_states
. This is the output
of BertModel
.
encoder_hidden_states_t5 ( ms.Tensor
of shape (batch size, sequence len, embed dims)
, optional):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: ms.Tensor
An attention mask of shape (batch, key_tokens)
is applied to encoder_hidden_states
. This is the output
of T5 Text Encoder.
image_meta_size (ms.Tensor):
Conditional embedding indicate the image sizes
style: ms.Tensor:
Conditional embedding indicate the style
image_rotary_emb (ms.Tensor
):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
Source code in mindone/diffusers/models/transformers/hunyuan_transformer_2d.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
|
mindone.diffusers.HunyuanDiT2DModel.enable_forward_chunking(chunk_size=None, dim=0)
¶
Sets the attention processor to use feed forward chunking.
PARAMETER | DESCRIPTION |
---|---|
chunk_size |
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=
TYPE:
|
dim |
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length).
TYPE:
|
Source code in mindone/diffusers/models/transformers/hunyuan_transformer_2d.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
|
mindone.diffusers.HunyuanDiT2DModel.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
PARAMETER | DESCRIPTION |
---|---|
processor |
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all If
TYPE:
|
Source code in mindone/diffusers/models/transformers/hunyuan_transformer_2d.py
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
mindone.diffusers.HunyuanDiT2DModel.set_default_attn_processor()
¶
Disables custom attention processors and sets the default attention implementation.
Source code in mindone/diffusers/models/transformers/hunyuan_transformer_2d.py
376 377 378 379 380 |
|