Skip to content

FluxTransformer2DModel

A Transformer model for image-like data from Flux.

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel

Bases: ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin

The Transformer model introduced in Flux.

Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

PARAMETER DESCRIPTION
patch_size

Patch size to turn the input data into small patches.

TYPE: `int` DEFAULT: 1

in_channels

The number of channels in the input.

TYPE: `int`, *optional*, defaults to 16 DEFAULT: 64

num_layers

The number of layers of MMDiT blocks to use.

TYPE: `int`, *optional*, defaults to 18 DEFAULT: 19

num_single_layers

The number of layers of single DiT blocks to use.

TYPE: `int`, *optional*, defaults to 18 DEFAULT: 38

attention_head_dim

The number of channels in each head.

TYPE: `int`, *optional*, defaults to 64 DEFAULT: 128

num_attention_heads

The number of heads to use for multi-head attention.

TYPE: `int`, *optional*, defaults to 18 DEFAULT: 24

joint_attention_dim

The number of encoder_hidden_states dimensions to use.

TYPE: `int`, *optional* DEFAULT: 4096

pooled_projection_dim

Number of dimensions to use when projecting the pooled_projections.

TYPE: `int` DEFAULT: 768

guidance_embeds

Whether to use guidance embeddings.

TYPE: `bool`, defaults to False DEFAULT: False

Source code in mindone/diffusers/models/transformers/transformer_flux.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
    """
    The Transformer model introduced in Flux.

    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/

    Parameters:
        patch_size (`int`): Patch size to turn the input data into small patches.
        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
        num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
        num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
        joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
        guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: Tuple[int] = (16, 56, 56),
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
        )

        self.context_embedder = nn.Dense(self.config.joint_attention_dim, self.inner_dim)
        self.x_embedder = nn.Dense(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.CellList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.CellList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Dense(self.inner_dim, patch_size * patch_size * self.out_channels, has_bias=True)

        self._gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: nn.Cell, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.name_cells().items():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.name_cells().items():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.name_cells().items():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.name_cells().items():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.cells():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedFluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    def gradient_checkpointing(self):
        return self._gradient_checkpointing

    @gradient_checkpointing.setter
    def gradient_checkpointing(self, value):
        if self._gradient_checkpointing != value:
            self._gradient_checkpointing = value
            for block in self.transformer_blocks:
                block.recompute()
            for block in self.single_transformer_blocks:
                block.recompute()

    def construct(
        self,
        hidden_states: ms.Tensor,
        encoder_hidden_states: ms.Tensor = None,
        pooled_projections: ms.Tensor = None,
        timestep: ms.Tensor = None,
        img_ids: ms.Tensor = None,
        txt_ids: ms.Tensor = None,
        guidance: ms.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples=None,
        controlnet_single_block_samples=None,
        return_dict: bool = False,
        controlnet_blocks_repeat: bool = False,
    ) -> Union[ms.Tensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `ms.Tensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `ms.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()

        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
            logger.warning(
                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
            )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
            )
            img_ids = img_ids[0]

        ids = ops.cat((txt_ids, img_ids), axis=0)
        image_rotary_emb = self.pos_embed(ids)

        for index_block, block in enumerate(self.transformer_blocks):
            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                joint_attention_kwargs=joint_attention_kwargs,
            )
            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = (len(self.transformer_blocks) + len(controlnet_block_samples) - 1) // len(
                    controlnet_block_samples
                )  # not supporting numpy
                # For Xlabs ControlNet.
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                    )
                else:
                    hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]

        hidden_states = ops.cat([encoder_hidden_states, hidden_states], axis=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            hidden_states = block(
                hidden_states=hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                joint_attention_kwargs=joint_attention_kwargs,
            )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = (
                    len(self.single_transformer_blocks) + len(controlnet_single_block_samples) - 1
                ) // len(
                    controlnet_single_block_samples
                )  # not supporting numpy
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.attn_processors: Dict[str, AttentionProcessor] property

RETURNS DESCRIPTION
Dict[str, AttentionProcessor]

dict of attention processors: A dictionary containing all attention processors used in the model with

Dict[str, AttentionProcessor]

indexed by its weight name.

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.construct(hidden_states, encoder_hidden_states=None, pooled_projections=None, timestep=None, img_ids=None, txt_ids=None, guidance=None, joint_attention_kwargs=None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict=False, controlnet_blocks_repeat=False)

The [FluxTransformer2DModel] forward method.

PARAMETER DESCRIPTION
hidden_states

Input hidden_states.

TYPE: `ms.Tensor` of shape `(batch size, channel, height, width)`

encoder_hidden_states

Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

TYPE: `ms.Tensor` of shape `(batch size, sequence_len, embed_dims)` DEFAULT: None

pooled_projections

Embeddings projected from the embeddings of input conditions.

TYPE: `ms.Tensor` of shape `(batch_size, projection_dim)` DEFAULT: None

timestep

Used to indicate denoising step.

TYPE: `ms.Tensor` DEFAULT: None

block_controlnet_hidden_states

(list of ms.Tensor): A list of tensors that if specified are added to the residuals of transformer blocks.

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~models.transformer_2d.Transformer2DModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[Tensor, Transformer2DModelOutput]

If return_dict is True, an [~models.transformer_2d.Transformer2DModelOutput] is returned, otherwise a

Union[Tensor, Transformer2DModelOutput]

tuple where the first element is the sample tensor.

Source code in mindone/diffusers/models/transformers/transformer_flux.py
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
def construct(
    self,
    hidden_states: ms.Tensor,
    encoder_hidden_states: ms.Tensor = None,
    pooled_projections: ms.Tensor = None,
    timestep: ms.Tensor = None,
    img_ids: ms.Tensor = None,
    txt_ids: ms.Tensor = None,
    guidance: ms.Tensor = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_block_samples=None,
    controlnet_single_block_samples=None,
    return_dict: bool = False,
    controlnet_blocks_repeat: bool = False,
) -> Union[ms.Tensor, Transformer2DModelOutput]:
    """
    The [`FluxTransformer2DModel`] forward method.

    Args:
        hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
            Input `hidden_states`.
        encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
            from the embeddings of input conditions.
        timestep ( `ms.Tensor`):
            Used to indicate denoising step.
        block_controlnet_hidden_states: (`list` of `ms.Tensor`):
            A list of tensors that if specified are added to the residuals of transformer blocks.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    if joint_attention_kwargs is not None:
        joint_attention_kwargs = joint_attention_kwargs.copy()

    if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
        logger.warning(
            "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
        )
    hidden_states = self.x_embedder(hidden_states)

    timestep = timestep.to(hidden_states.dtype) * 1000
    if guidance is not None:
        guidance = guidance.to(hidden_states.dtype) * 1000
    else:
        guidance = None
    temb = (
        self.time_text_embed(timestep, pooled_projections)
        if guidance is None
        else self.time_text_embed(timestep, guidance, pooled_projections)
    )
    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    if txt_ids.ndim == 3:
        logger.warning(
            "Passing `txt_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
        )
        txt_ids = txt_ids[0]
    if img_ids.ndim == 3:
        logger.warning(
            "Passing `img_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d mindspore Tensor"
        )
        img_ids = img_ids[0]

    ids = ops.cat((txt_ids, img_ids), axis=0)
    image_rotary_emb = self.pos_embed(ids)

    for index_block, block in enumerate(self.transformer_blocks):
        encoder_hidden_states, hidden_states = block(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
            joint_attention_kwargs=joint_attention_kwargs,
        )
        # controlnet residual
        if controlnet_block_samples is not None:
            interval_control = (len(self.transformer_blocks) + len(controlnet_block_samples) - 1) // len(
                controlnet_block_samples
            )  # not supporting numpy
            # For Xlabs ControlNet.
            if controlnet_blocks_repeat:
                hidden_states = (
                    hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                )
            else:
                hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]

    hidden_states = ops.cat([encoder_hidden_states, hidden_states], axis=1)

    for index_block, block in enumerate(self.single_transformer_blocks):
        hidden_states = block(
            hidden_states=hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
            joint_attention_kwargs=joint_attention_kwargs,
        )

        # controlnet residual
        if controlnet_single_block_samples is not None:
            interval_control = (
                len(self.single_transformer_blocks) + len(controlnet_single_block_samples) - 1
            ) // len(
                controlnet_single_block_samples
            )  # not supporting numpy
            hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                + controlnet_single_block_samples[index_block // interval_control]
            )

    hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

    hidden_states = self.norm_out(hidden_states, temb)
    output = self.proj_out(hidden_states)

    if not return_dict:
        return (output,)

    return Transformer2DModelOutput(sample=output)

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.fuse_qkv_projections()

Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused.

This API is 🧪 experimental.

Source code in mindone/diffusers/models/transformers/transformer_flux.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def fuse_qkv_projections(self):
    """
    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
    are fused. For cross-attention modules, key and value projection matrices are fused.

    <Tip warning={true}>

    This API is 🧪 experimental.

    </Tip>
    """
    self.original_attn_processors = None

    for _, attn_processor in self.attn_processors.items():
        if "Added" in str(attn_processor.__class__.__name__):
            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

    self.original_attn_processors = self.attn_processors

    for module in self.cells():
        if isinstance(module, Attention):
            module.fuse_projections(fuse=True)

    self.set_attn_processor(FusedFluxAttnProcessor2_0())

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.set_attn_processor(processor)

Sets the attention processor to use to compute attention.

PARAMETER DESCRIPTION
processor

The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention layers.

If processor is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.

TYPE: `dict` of `AttentionProcessor` or only `AttentionProcessor`

Source code in mindone/diffusers/models/transformers/transformer_flux.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
    r"""
    Sets the attention processor to use to compute attention.

    Parameters:
        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
            The instantiated processor class or a dictionary of processor classes that will be set as the processor
            for **all** `Attention` layers.

            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
            processor. This is strongly recommended when setting trainable attention processors.

    """
    count = len(self.attn_processors.keys())

    if isinstance(processor, dict) and len(processor) != count:
        raise ValueError(
            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
        )

    def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
        if hasattr(module, "set_processor"):
            if not isinstance(processor, dict):
                module.set_processor(processor)
            else:
                module.set_processor(processor.pop(f"{name}.processor"))

        for sub_name, child in module.name_cells().items():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in self.name_cells().items():
        fn_recursive_attn_processor(name, module, processor)

mindone.diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.unfuse_qkv_projections()

Disables the fused QKV projection if enabled.

This API is 🧪 experimental.

Source code in mindone/diffusers/models/transformers/transformer_flux.py
362
363
364
365
366
367
368
369
370
371
372
373
def unfuse_qkv_projections(self):
    """Disables the fused QKV projection if enabled.

    <Tip warning={true}>

    This API is 🧪 experimental.

    </Tip>

    """
    if self.original_attn_processors is not None:
        self.set_attn_processor(self.original_attn_processors)