DiTTransformer2DModel¶
A Transformer model for image-like data from DiT.
mindone.diffusers.DiTTransformer2DModel
¶
Bases: ModelMixin
, ConfigMixin
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748).
PARAMETER | DESCRIPTION |
---|---|
num_attention_heads |
The number of heads to use for multi-head attention.
TYPE:
|
attention_head_dim |
The number of channels in each head.
TYPE:
|
in_channels |
The number of channels in the input.
TYPE:
|
out_channels |
The number of channels in the output. Specify this parameter if the output channel number differs from the input.
TYPE:
|
num_layers |
The number of layers of Transformer blocks to use.
TYPE:
|
dropout |
The dropout probability to use within the Transformer blocks.
TYPE:
|
norm_num_groups |
Number of groups for group normalization within Transformer blocks.
TYPE:
|
attention_bias |
Configure if the Transformer blocks' attention should contain a bias parameter.
TYPE:
|
sample_size |
The width of the latent images. This parameter is fixed during training.
TYPE:
|
patch_size |
Size of the patches the model processes, relevant for architectures working on non-sequential data.
TYPE:
|
activation_fn |
Activation function to use in feed-forward networks within Transformer blocks.
TYPE:
|
num_embeds_ada_norm |
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference.
TYPE:
|
upcast_attention |
If true, upcasts the attention mechanism dimensions for potentially improved performance.
TYPE:
|
norm_type |
Specifies the type of normalization used, can be 'ada_norm_zero'.
TYPE:
|
norm_elementwise_affine |
If true, enables element-wise affine parameters in the normalization layers.
TYPE:
|
norm_eps |
A small constant added to the denominator in normalization layers to prevent division by zero.
TYPE:
|
Source code in mindone/diffusers/models/transformers/dit_transformer_2d.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
mindone.diffusers.DiTTransformer2DModel.construct(hidden_states, timestep=None, class_labels=None, cross_attention_kwargs=None, return_dict=False)
¶
The [DiTTransformer2DModel
] forward method.
PARAMETER | DESCRIPTION |
---|---|
hidden_states |
noqa: E501¶Input
TYPE:
|
timestep |
Used to indicate denoising step. Optional timestep to be applied as an embedding in
TYPE:
|
class_labels |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
TYPE:
|
cross_attention_kwargs |
A kwargs dictionary that if specified is passed along to the
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
If |
|
|
Source code in mindone/diffusers/models/transformers/dit_transformer_2d.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|