SparseControlNetModel¶
SparseControlNetModel is an implementation of ControlNet for AnimateDiff.
ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
The SparseCtrl version of ControlNet was introduced in SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models for achieving controlled generation in text-to-video diffusion models by Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai.
The abstract from the paper is:
The development of text-to-video (T2V), i.e., generating videos with a given text prompt, has been significantly advanced in recent years. However, relying solely on text prompts often results in ambiguous frame composition due to spatial uncertainty. The research community thus leverages the dense structure signals, e.g., per-frame depth/edge sequences, to enhance controllability, whose collection accordingly increases the burden of inference. In this work, we present SparseCtrl to enable flexible structure control with temporally sparse signals, requiring only one or a few inputs, as shown in Figure 1. It incorporates an additional condition encoder to process these sparse signals while leaving the pre-trained T2V model untouched. The proposed approach is compatible with various modalities, including sketches, depth maps, and RGB images, providing more practical control for video generation and promoting applications such as storyboarding, depth rendering, keyframe animation, and interpolation. Extensive experiments demonstrate the generalization of SparseCtrl on both original and personalized T2V generators. Codes and models will be publicly available at this https URL.
Example for loading SparseControlNetModel¶
import mindspore as ms
from mindone.diffusers import SparseControlNetModel
# fp32 variant in float16
# 1. Scribble checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", mindspore_dtype=ms.float16)
# 2. RGB checkpoint
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-rgb", mindspore_dtype=ms.float16)
# For loading fp16 variant, pass `variant="fp16"` as an additional parameter
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel
¶
Bases: ModelMixin
, ConfigMixin
, FromOriginalModelMixin
A SparseControlNet model as described in SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion Models.
PARAMETER | DESCRIPTION |
---|---|
in_channels |
The number of channels in the input sample.
TYPE:
|
conditioning_channels |
The number of input channels in the controlnet conditional embedding module. If
TYPE:
|
flip_sin_to_cos |
Whether to flip the sin to cos in the time embedding.
TYPE:
|
freq_shift |
The frequency shift to apply to the time embedding.
TYPE:
|
down_block_types |
The tuple of downsample blocks to use.
TYPE:
|
only_cross_attention |
TYPE:
|
block_out_channels |
The tuple of output channels for each block.
TYPE:
|
layers_per_block |
The number of layers per block.
TYPE:
|
downsample_padding |
The padding to use for the downsampling convolution.
TYPE:
|
mid_block_scale_factor |
The scale factor to use for the mid block.
TYPE:
|
act_fn |
The activation function to use.
TYPE:
|
norm_num_groups |
The number of groups to use for the normalization. If None, normalization and activation layers is skipped in post-processing.
TYPE:
|
norm_eps |
The epsilon to use for the normalization.
TYPE:
|
cross_attention_dim |
The dimension of the cross attention features.
TYPE:
|
transformer_layers_per_block |
The number of transformer blocks of type [
TYPE:
|
transformer_layers_per_mid_block |
The number of transformer layers to use in each layer in the middle block.
TYPE:
|
attention_head_dim |
The dimension of the attention heads.
TYPE:
|
num_attention_heads |
The number of heads to use for multi-head attention.
TYPE:
|
use_linear_projection |
TYPE:
|
upcast_attention |
TYPE:
|
resnet_time_scale_shift |
Time scale shift config for ResNet blocks (see
TYPE:
|
conditioning_embedding_out_channels |
The tuple of output channel for each block in the
TYPE:
|
global_pool_conditions |
TODO(Patrick) - unused parameter
TYPE:
|
controlnet_conditioning_channel_order |
TYPE:
|
motion_max_seq_length |
The maximum sequence length to use in the motion module.
TYPE:
|
motion_num_attention_heads |
The number of heads to use in each attention layer of the motion module.
TYPE:
|
concat_conditioning_mask |
TYPE:
|
use_simplified_condition_embedding |
TYPE:
|
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel.construct(sample, timestep, encoder_hidden_states, controlnet_cond, conditioning_scale=1.0, timestep_cond=None, attention_mask=None, cross_attention_kwargs=None, conditioning_mask=None, guess_mode=False, return_dict=False)
¶
The [SparseControlNetModel
] forward method.
PARAMETER | DESCRIPTION |
---|---|
sample |
The noisy input tensor.
TYPE:
|
timestep |
The number of timesteps to denoise an input.
TYPE:
|
encoder_hidden_states |
The encoder hidden states.
TYPE:
|
controlnet_cond |
The conditional input tensor of shape
TYPE:
|
conditioning_scale |
The scale factor for ControlNet outputs.
TYPE:
|
class_labels |
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
TYPE:
|
timestep_cond |
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
timestep_embedding passed through the
TYPE:
|
attention_mask |
An attention mask of shape
TYPE:
|
added_cond_kwargs |
Additional conditions for the Stable Diffusion XL UNet.
TYPE:
|
cross_attention_kwargs |
A kwargs dictionary that if specified is passed along to the
TYPE:
|
guess_mode |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
you remove all prompts. A
TYPE:
|
return_dict |
Whether or not to return a [
TYPE:
|
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel.from_unet(unet, controlnet_conditioning_channel_order='rgb', conditioning_embedding_out_channels=(16, 32, 96, 256), load_weights_from_unet=True, conditioning_channels=3)
classmethod
¶
Instantiate a [SparseControlNetModel
] from [UNet2DConditionModel
].
PARAMETER | DESCRIPTION |
---|---|
unet |
The UNet model weights to copy to the [
TYPE:
|
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
|
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
PARAMETER | DESCRIPTION |
---|---|
processor |
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all If
TYPE:
|
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetModel.set_default_attn_processor()
¶
Disables custom attention processors and sets the default attention implementation.
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|
mindone.diffusers.models.controlnet_sparsectrl.SparseControlNetOutput
dataclass
¶
Bases: BaseOutput
The output of [SparseControlNetModel
].
PARAMETER | DESCRIPTION |
---|---|
down_block_res_samples |
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
be of shape
TYPE:
|
mid_down_block_re_sample |
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
TYPE:
|
Source code in mindone/diffusers/models/controlnet_sparsectrl.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|