Skip to content

SD3ControlNetModel

SD3ControlNetModel is an implementation of ControlNet for Stable Diffusion 3.

The ControlNet model was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

Loading from the original format

By default the SD3ControlNetModel should be loaded with ModelMixin.from_pretrained.

from mindone.diffusers import StableDiffusion3ControlNetPipeline
from mindone.diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel


controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
pipe = StableDiffusion3ControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet)

mindone.diffusers.SD3ControlNetModel

Bases: ModelMixin, ConfigMixin, PeftAdapterMixin

Source code in mindone/diffusers/models/controlnet_sd3.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = False  # not supported now

    @register_to_config
    def __init__(
        self,
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 16,
        num_layers: int = 18,
        attention_head_dim: int = 64,
        num_attention_heads: int = 18,
        joint_attention_dim: int = 4096,
        caption_projection_dim: int = 1152,
        pooled_projection_dim: int = 2048,
        out_channels: int = 16,
        pos_embed_max_size: int = 96,
    ):
        super().__init__()
        default_out_channels = in_channels
        self.out_channels = out_channels if out_channels is not None else default_out_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = PatchEmbed(
            height=sample_size,
            width=sample_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=self.inner_dim,
            pos_embed_max_size=pos_embed_max_size,
        )
        self.time_text_embed = CombinedTimestepTextProjEmbeddings(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )
        self.context_embedder = nn.Dense(joint_attention_dim, caption_projection_dim)

        # `attention_head_dim` is doubled to account for the mixing.
        # It needs to crafted when we get the actual checkpoints.
        self.transformer_blocks = nn.CellList(
            [
                JointTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                    context_pre_only=False,
                )
                for i in range(num_layers)
            ]
        )

        # controlnet_blocks
        self.controlnet_blocks = []
        for _ in range(len(self.transformer_blocks)):
            controlnet_block = nn.Dense(
                self.inner_dim,
                self.inner_dim,
                weight_init="zeros",
                bias_init="zeros",
            )  # zero_module
            self.controlnet_blocks.append(controlnet_block)
        self.controlnet_blocks = nn.CellList(self.controlnet_blocks)

        self.pos_embed_input = PatchEmbed(
            height=sample_size,
            width=sample_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=self.inner_dim,
            pos_embed_type=None,
            zero_module=True,
        )  # zero module, FIXME: only conv2d zero

        self.gradient_checkpointing = False

    # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
    def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
        """
        Sets the attention processor to use [feed forward
        chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

        Parameters:
            chunk_size (`int`, *optional*):
                The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
                over each tensor of dim=`dim`.
            dim (`int`, *optional*, defaults to `0`):
                The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
                or dim=1 (sequence length).
        """
        if dim not in [0, 1]:
            raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

        # By default chunk size is 1
        chunk_size = chunk_size or 1

        def fn_recursive_feed_forward(module: nn.Cell, chunk_size: int, dim: int):
            if hasattr(module, "set_chunk_feed_forward"):
                module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

            for child in module.name_cells().values():
                fn_recursive_feed_forward(child, chunk_size, dim)

        for module in self.name_cells().values():
            fn_recursive_feed_forward(module, chunk_size, dim)

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: nn.Cell, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.name_cells().items():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.name_cells().items():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.name_cells().items():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.name_cells().items():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @classmethod
    def from_transformer(cls, transformer, num_layers=12, load_weights_from_transformer=True):
        config = transformer.config
        config["num_layers"] = num_layers or config.num_layers
        controlnet = cls(**config)

        if load_weights_from_transformer:
            ms.load_param_into_net(controlnet.pos_embed, transformer.pos_embed.parameters_dict())
            ms.load_param_into_net(controlnet.time_text_embed, transformer.time_text_embed.parameters_dict())
            ms.load_param_into_net(controlnet.context_embedder, transformer.context_embedder.parameters_dict())
            ms.load_param_into_net(controlnet.transformer_blocks, transformer.transformer_blocks.parameters_dict())

            # No `zero_module` here for it is done in cls.__init__
            # controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)

        return controlnet

    def construct(
        self,
        hidden_states: ms.Tensor,
        controlnet_cond: ms.Tensor,
        conditioning_scale: float = 1.0,
        encoder_hidden_states: ms.Tensor = None,
        pooled_projections: ms.Tensor = None,
        timestep: ms.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> Union[ms.Tensor, Transformer2DModelOutput]:
        """
        The [`SD3Transformer2DModel`] forward method.

        Args:
            hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            controlnet_cond (`ms.Tensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `ms.Tensor`):
                Used to indicate denoising step.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
            # weight the lora layers by setting `lora_scale` for each PEFT layer here
            # and remove `lora_scale` from each PEFT layer at the end.
            # scale_lora_layers & unscale_lora_layers maybe contains some operation forbidden in graph mode
            raise RuntimeError(
                f"You are trying to set scaling of lora layer by passing {joint_attention_kwargs['scale']}. "
                f"However it's not allowed in on-the-fly model forwarding. "
                f"Please manually call `scale_lora_layers(model, lora_scale)` before model forwarding and "
                f"`unscale_lora_layers(model, lora_scale)` after model forwarding. "
                f"For example, it can be done in a pipeline call like `StableDiffusionPipeline.__call__`."
            )

        hidden_states = self.pos_embed(hidden_states)  # takes care of adding positional embeddings too.
        temb = self.time_text_embed(timestep, pooled_projections)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        # add
        hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)

        block_res_samples = ()

        for block in self.transformer_blocks:
            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
            )

            block_res_samples = block_res_samples + (hidden_states,)

        controlnet_block_res_samples = ()
        for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
            block_res_sample = controlnet_block(block_res_sample)
            controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)

        # 6. scaling
        controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]

        if not return_dict:
            return (controlnet_block_res_samples,)

        return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)

mindone.diffusers.SD3ControlNetModel.attn_processors: Dict[str, AttentionProcessor] property

RETURNS DESCRIPTION
Dict[str, AttentionProcessor]

dict of attention processors: A dictionary containing all attention processors used in the model with

Dict[str, AttentionProcessor]

indexed by its weight name.

mindone.diffusers.SD3ControlNetModel.construct(hidden_states, controlnet_cond, conditioning_scale=1.0, encoder_hidden_states=None, pooled_projections=None, timestep=None, joint_attention_kwargs=None, return_dict=False)

The [SD3Transformer2DModel] forward method.

PARAMETER DESCRIPTION
hidden_states

Input hidden_states.

TYPE: `ms.Tensor` of shape `(batch size, channel, height, width)`

controlnet_cond

The conditional input tensor of shape (batch_size, sequence_length, hidden_size).

TYPE: `ms.Tensor`

conditioning_scale

The scale factor for ControlNet outputs.

TYPE: `float`, defaults to `1.0` DEFAULT: 1.0

encoder_hidden_states

Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

TYPE: `ms.Tensor` of shape `(batch size, sequence_len, embed_dims)` DEFAULT: None

pooled_projections

Embeddings projected from the embeddings of input conditions.

TYPE: `ms.Tensor` of shape `(batch_size, projection_dim)` DEFAULT: None

timestep

Used to indicate denoising step.

TYPE: `ms.Tensor` DEFAULT: None

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~models.transformer_2d.Transformer2DModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[Tensor, Transformer2DModelOutput]

If return_dict is True, an [~models.transformer_2d.Transformer2DModelOutput] is returned, otherwise a

Union[Tensor, Transformer2DModelOutput]

tuple where the first element is the sample tensor.

Source code in mindone/diffusers/models/controlnet_sd3.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def construct(
    self,
    hidden_states: ms.Tensor,
    controlnet_cond: ms.Tensor,
    conditioning_scale: float = 1.0,
    encoder_hidden_states: ms.Tensor = None,
    pooled_projections: ms.Tensor = None,
    timestep: ms.Tensor = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    return_dict: bool = False,
) -> Union[ms.Tensor, Transformer2DModelOutput]:
    """
    The [`SD3Transformer2DModel`] forward method.

    Args:
        hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
            Input `hidden_states`.
        controlnet_cond (`ms.Tensor`):
            The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
        conditioning_scale (`float`, defaults to `1.0`):
            The scale factor for ControlNet outputs.
        encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
            from the embeddings of input conditions.
        timestep ( `ms.Tensor`):
            Used to indicate denoising step.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
        # weight the lora layers by setting `lora_scale` for each PEFT layer here
        # and remove `lora_scale` from each PEFT layer at the end.
        # scale_lora_layers & unscale_lora_layers maybe contains some operation forbidden in graph mode
        raise RuntimeError(
            f"You are trying to set scaling of lora layer by passing {joint_attention_kwargs['scale']}. "
            f"However it's not allowed in on-the-fly model forwarding. "
            f"Please manually call `scale_lora_layers(model, lora_scale)` before model forwarding and "
            f"`unscale_lora_layers(model, lora_scale)` after model forwarding. "
            f"For example, it can be done in a pipeline call like `StableDiffusionPipeline.__call__`."
        )

    hidden_states = self.pos_embed(hidden_states)  # takes care of adding positional embeddings too.
    temb = self.time_text_embed(timestep, pooled_projections)
    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    # add
    hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)

    block_res_samples = ()

    for block in self.transformer_blocks:
        encoder_hidden_states, hidden_states = block(
            hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
        )

        block_res_samples = block_res_samples + (hidden_states,)

    controlnet_block_res_samples = ()
    for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
        block_res_sample = controlnet_block(block_res_sample)
        controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)

    # 6. scaling
    controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]

    if not return_dict:
        return (controlnet_block_res_samples,)

    return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)

mindone.diffusers.SD3ControlNetModel.enable_forward_chunking(chunk_size=None, dim=0)

Sets the attention processor to use feed forward chunking.

PARAMETER DESCRIPTION
chunk_size

The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=dim.

TYPE: `int`, *optional* DEFAULT: None

dim

The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length).

TYPE: `int`, *optional*, defaults to `0` DEFAULT: 0

Source code in mindone/diffusers/models/controlnet_sd3.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
    """
    Sets the attention processor to use [feed forward
    chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).

    Parameters:
        chunk_size (`int`, *optional*):
            The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
            over each tensor of dim=`dim`.
        dim (`int`, *optional*, defaults to `0`):
            The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
            or dim=1 (sequence length).
    """
    if dim not in [0, 1]:
        raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")

    # By default chunk size is 1
    chunk_size = chunk_size or 1

    def fn_recursive_feed_forward(module: nn.Cell, chunk_size: int, dim: int):
        if hasattr(module, "set_chunk_feed_forward"):
            module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)

        for child in module.name_cells().values():
            fn_recursive_feed_forward(child, chunk_size, dim)

    for module in self.name_cells().values():
        fn_recursive_feed_forward(module, chunk_size, dim)

mindone.diffusers.SD3ControlNetModel.set_attn_processor(processor)

Sets the attention processor to use to compute attention.

PARAMETER DESCRIPTION
processor

The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention layers.

If processor is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.

TYPE: `dict` of `AttentionProcessor` or only `AttentionProcessor`

Source code in mindone/diffusers/models/controlnet_sd3.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
    r"""
    Sets the attention processor to use to compute attention.

    Parameters:
        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
            The instantiated processor class or a dictionary of processor classes that will be set as the processor
            for **all** `Attention` layers.

            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
            processor. This is strongly recommended when setting trainable attention processors.

    """
    count = len(self.attn_processors.keys())

    if isinstance(processor, dict) and len(processor) != count:
        raise ValueError(
            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
        )

    def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
        if hasattr(module, "set_processor"):
            if not isinstance(processor, dict):
                module.set_processor(processor)
            else:
                module.set_processor(processor.pop(f"{name}.processor"))

        for sub_name, child in module.name_cells().items():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in self.name_cells().items():
        fn_recursive_attn_processor(name, module, processor)

mindone.diffusers.models.controlnet_sd3.SD3ControlNetOutput dataclass

Bases: BaseOutput

Source code in mindone/diffusers/models/controlnet_sd3.py
35
36
37
@dataclass
class SD3ControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[ms.Tensor]