HunyuanDiT2DControlNetModel¶
HunyuanDiT2DControlNetModel is an implementation of ControlNet for Hunyuan-DiT.
ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Hunyuan-DiT generation. For example, if you provide a depth map, the ControlNet model generates an image that'll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.
This code is implemented by Tencent Hunyuan Team. You can find pre-trained checkpoints for Hunyuan-DiT ControlNets on Tencent Hunyuan.
Example For Loading HunyuanDiT2DControlNetModel¶
from mindone.diffusers import HunyuanDiT2DControlNetModel
import mindspore as ms
controlnet = HunyuanDiT2DControlNetModel.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Pose", mindspore_dtype=ms.float16)
mindone.diffusers.HunyuanDiT2DControlNetModel
¶
Bases: ModelMixin
, ConfigMixin
Source code in mindone/diffusers/models/controlnet_hunyuan.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
mindone.diffusers.HunyuanDiT2DControlNetModel.attn_processors: Dict[str, AttentionProcessor]
property
¶
RETURNS | DESCRIPTION |
---|---|
Dict[str, AttentionProcessor]
|
|
Dict[str, AttentionProcessor]
|
indexed by its weight name. |
mindone.diffusers.HunyuanDiT2DControlNetModel.construct(hidden_states, timestep, controlnet_cond, conditioning_scale=1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=False)
¶
The [HunyuanDiT2DControlNetModel
] forward method.
hidden_states (ms.Tensor
of shape (batch size, dim, height, width)
):
The input tensor.
timestep ( ms.Tensor
, optional):
Used to indicate denoising step.
controlnet_cond ( ms.Tensor
):
The conditioning input to ControlNet.
conditioning_scale ( float
):
Indicate the conditioning scale.
encoder_hidden_states ( ms.Tensor
of shape (batch size, sequence len, embed dims)
, optional):
Conditional embeddings for cross attention layer. This is the output of BertModel
.
text_embedding_mask: ms.Tensor
An attention mask of shape (batch, key_tokens)
is applied to encoder_hidden_states
. This is the output
of BertModel
.
encoder_hidden_states_t5 ( ms.Tensor
of shape (batch size, sequence len, embed dims)
, optional):
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
text_embedding_mask_t5: ms.Tensor
An attention mask of shape (batch, key_tokens)
is applied to encoder_hidden_states
. This is the output
of T5 Text Encoder.
image_meta_size (ms.Tensor):
Conditional embedding indicate the image sizes
style: ms.Tensor:
Conditional embedding indicate the style
image_rotary_emb (ms.Tensor
):
The image rotary embeddings to apply on query and key tensors during attention calculation.
return_dict: bool
Whether to return a dictionary.
Source code in mindone/diffusers/models/controlnet_hunyuan.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
mindone.diffusers.HunyuanDiT2DControlNetModel.set_attn_processor(processor)
¶
Sets the attention processor to use to compute attention.
PARAMETER | DESCRIPTION |
---|---|
processor |
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for all
TYPE:
|
Source code in mindone/diffusers/models/controlnet_hunyuan.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
|