Skip to content

FluxControlNetModel

FluxControlNetModel is an implementation of ControlNet for Flux.1.

The ControlNet model was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang, Anyi Rao, Maneesh Agrawala. It provides a greater degree of control over text-to-image generation by conditioning the model on additional inputs such as edge maps, depth maps, segmentation maps, and keypoints for pose detection.

The abstract from the paper is:

We present ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready large diffusion models, and reuses their deep and robust encoding layers pretrained with billions of images as a strong backbone to learn a diverse set of conditional controls. The neural architecture is connected with "zero convolutions" (zero-initialized convolution layers) that progressively grow the parameters from zero and ensure that no harmful noise could affect the finetuning. We test various conditioning controls, eg, edges, depth, segmentation, human pose, etc, with Stable Diffusion, using single or multiple conditions, with or without prompts. We show that the training of ControlNets is robust with small (<50k) and large (>1m) datasets. Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.

Loading from the original format

By default the FluxControlNetModel should be loaded with ModelMixin.from_pretrained.

from mindone.diffusers import FluxControlNetPipeline
from mindone.diffusers.models import FluxControlNetModel, FluxMultiControlNetModel

controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)

controlnet = FluxControlNetModel.from_pretrained("InstantX/FLUX.1-dev-Controlnet-Canny")
controlnet = FluxMultiControlNetModel([controlnet])
pipe = FluxControlNetPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet)

FluxControlNetModel

mindone.diffusers.models.controlnet_flux.FluxControlNetModel

Bases: ModelMixin, ConfigMixin, PeftAdapterMixin

Source code in mindone/diffusers/models/controlnet_flux.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: List[int] = [16, 56, 56],
        num_mode: int = None,
        conditioning_embedding_channels: int = None,
    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )

        self.context_embedder = nn.Dense(joint_attention_dim, self.inner_dim)
        self.x_embedder = nn.Dense(in_channels, self.inner_dim)

        self.transformer_blocks = nn.CellList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.CellList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for i in range(num_single_layers)
            ]
        )

        # controlnet_blocks
        controlnet_blocks = []
        for _ in range(len(self.transformer_blocks)):
            controlnet_blocks.append(
                nn.Dense(self.inner_dim, self.inner_dim, weight_init="zeros", bias_init="zeros")
            )  # zero_module
        self.controlnet_blocks = nn.CellList(controlnet_blocks)

        controlnet_single_blocks = []
        for _ in range(len(self.single_transformer_blocks)):
            controlnet_single_blocks.append(
                nn.Dense(self.inner_dim, self.inner_dim, weight_init="zeros", bias_init="zeros")
            )  # zero_module
        self.controlnet_single_blocks = nn.CellList(controlnet_single_blocks)

        self.union = num_mode is not None
        if self.union:
            self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)

        if conditioning_embedding_channels is not None:
            self.input_hint_block = ControlNetConditioningEmbedding(
                conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
            )
            self.controlnet_x_embedder = nn.Dense(in_channels, self.inner_dim)
        else:
            self.input_hint_block = None
            self.controlnet_x_embedder = nn.Dense(
                in_channels, self.inner_dim, weight_init="zeros", bias_init="zeros"
            )  # zero_module

        self.gradient_checkpointing = False
        self.patch_size = self.config.patch_size

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self):
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: nn.Cell, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.name_cells().items():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.name_cells().items():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.name_cells().items():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.name_cells().items():
            fn_recursive_attn_processor(name, module, processor)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @classmethod
    def from_transformer(
        cls,
        transformer,
        num_layers: int = 4,
        num_single_layers: int = 10,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        load_weights_from_transformer=True,
    ):
        config = transformer.config
        config["num_layers"] = num_layers
        config["num_single_layers"] = num_single_layers
        config["attention_head_dim"] = attention_head_dim
        config["num_attention_heads"] = num_attention_heads

        controlnet = cls(**config)

        if load_weights_from_transformer:
            ms.load_param_into_net(controlnet.pos_embed, transformer.pos_embed.parameters_dict())
            ms.load_param_into_net(controlnet.time_text_embed, transformer.time_text_embed.parameters_dict())
            ms.load_param_into_net(controlnet.context_embedder, transformer.context_embedder.parameters_dict())
            ms.load_param_into_net(controlnet.x_embedder, transformer.x_embedder.parameters_dict())
            ms.load_param_into_net(
                controlnet.transformer_blocks, transformer.transformer_blocks.parameters_dict(), strict_load=False
            )
            ms.load_param_into_net(
                controlnet.single_transformer_blocks,
                transformer.single_transformer_blocks.parameters_dict(),
                strict_load=False,
            )

            # zero_module
            controlnet.controlnet_x_embedder.weight.set_data(
                initializer(
                    "zeros",
                    controlnet.controlnet_x_embedder.weight.shape,
                    controlnet.controlnet_x_embedder.weight.dtype,
                )
            )
            controlnet.controlnet_x_embedder.bias.set_data(
                initializer(
                    "zeros", controlnet.controlnet_x_embedder.bias.shape, controlnet.controlnet_x_embedder.bias.dtype
                )
            )

        return controlnet

    def construct(
        self,
        hidden_states: ms.Tensor,
        controlnet_cond: ms.Tensor,
        controlnet_mode: ms.Tensor = None,
        conditioning_scale: float = 1.0,
        encoder_hidden_states: ms.Tensor = None,
        pooled_projections: ms.Tensor = None,
        timestep: ms.Tensor = None,
        img_ids: ms.Tensor = None,
        txt_ids: ms.Tensor = None,
        guidance: ms.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = False,
    ) -> Union[ms.Tensor, Transformer2DModelOutput]:
        """
        The [`FluxTransformer2DModel`] forward method.

        Args:
            hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            controlnet_cond (`ms.Tensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            controlnet_mode (`ms.Tensor`):
                The mode tensor of shape `(batch_size, 1)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
            pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
                from the embeddings of input conditions.
            timestep ( `ms.Tensor`):
                Used to indicate denoising step.
            block_controlnet_hidden_states: (`list` of `ms.Tensor`):
                A list of tensors that if specified are added to the residuals of transformer blocks.
            joint_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            return_dict (`bool`, *optional*, defaults to `False`):
                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()

        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
            logger.warning(
                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
            )
        hidden_states = self.x_embedder(hidden_states)

        if self.input_hint_block is not None:
            controlnet_cond = self.input_hint_block(controlnet_cond)
            batch_size, channels, height_pw, width_pw = controlnet_cond.shape
            height = height_pw // self.patch_size
            width = width_pw // self.patch_size
            controlnet_cond = controlnet_cond.reshape(
                batch_size, channels, height, self.patch_size, width, self.patch_size
            )
            controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
            controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
        # add
        hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if self.union:
            # union mode
            if controlnet_mode is None:
                raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
            # union mode emb
            controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
            encoder_hidden_states = ops.cat([controlnet_mode_emb, encoder_hidden_states], axis=1)
            txt_ids = ops.cat([txt_ids[:1], txt_ids], axis=0)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d ms.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = ops.cat((txt_ids, img_ids), axis=0)
        image_rotary_emb = self.pos_embed(ids)

        block_samples = ()
        for index_block, block in enumerate(self.transformer_blocks):
            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
            )
            block_samples = block_samples + (hidden_states,)

        hidden_states = ops.cat([encoder_hidden_states, hidden_states], axis=1)

        single_block_samples = ()
        for index_block, block in enumerate(self.single_transformer_blocks):
            hidden_states = block(
                hidden_states=hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
            )
            single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)

        # controlnet block
        controlnet_block_samples = ()
        for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
            block_sample = controlnet_block(block_sample)
            controlnet_block_samples = controlnet_block_samples + (block_sample,)

        controlnet_single_block_samples = ()
        for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
            single_block_sample = controlnet_block(single_block_sample)
            controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)

        # scaling
        controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
        controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]

        controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
        controlnet_single_block_samples = (
            None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
        )

        if not return_dict:
            return (controlnet_block_samples, controlnet_single_block_samples)

        return FluxControlNetOutput(
            controlnet_block_samples=controlnet_block_samples,
            controlnet_single_block_samples=controlnet_single_block_samples,
        )

mindone.diffusers.models.controlnet_flux.FluxControlNetModel.attn_processors property

RETURNS DESCRIPTION

dict of attention processors: A dictionary containing all attention processors used in the model with

indexed by its weight name.

mindone.diffusers.models.controlnet_flux.FluxControlNetModel.construct(hidden_states, controlnet_cond, controlnet_mode=None, conditioning_scale=1.0, encoder_hidden_states=None, pooled_projections=None, timestep=None, img_ids=None, txt_ids=None, guidance=None, joint_attention_kwargs=None, return_dict=False)

The [FluxTransformer2DModel] forward method.

PARAMETER DESCRIPTION
hidden_states

Input hidden_states.

TYPE: `ms.Tensor` of shape `(batch size, channel, height, width)`

controlnet_cond

The conditional input tensor of shape (batch_size, sequence_length, hidden_size).

TYPE: `ms.Tensor`

controlnet_mode

The mode tensor of shape (batch_size, 1).

TYPE: `ms.Tensor` DEFAULT: None

conditioning_scale

The scale factor for ControlNet outputs.

TYPE: `float`, defaults to `1.0` DEFAULT: 1.0

encoder_hidden_states

Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

TYPE: `ms.Tensor` of shape `(batch size, sequence_len, embed_dims)` DEFAULT: None

pooled_projections

Embeddings projected from the embeddings of input conditions.

TYPE: `ms.Tensor` of shape `(batch_size, projection_dim)` DEFAULT: None

timestep

Used to indicate denoising step.

TYPE: `ms.Tensor` DEFAULT: None

block_controlnet_hidden_states

(list of ms.Tensor): A list of tensors that if specified are added to the residuals of transformer blocks.

joint_attention_kwargs

A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processor.

TYPE: `dict`, *optional* DEFAULT: None

return_dict

Whether or not to return a [~models.transformer_2d.Transformer2DModelOutput] instead of a plain tuple.

TYPE: `bool`, *optional*, defaults to `False` DEFAULT: False

RETURNS DESCRIPTION
Union[Tensor, Transformer2DModelOutput]

If return_dict is True, an [~models.transformer_2d.Transformer2DModelOutput] is returned, otherwise a

Union[Tensor, Transformer2DModelOutput]

tuple where the first element is the sample tensor.

Source code in mindone/diffusers/models/controlnet_flux.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
def construct(
    self,
    hidden_states: ms.Tensor,
    controlnet_cond: ms.Tensor,
    controlnet_mode: ms.Tensor = None,
    conditioning_scale: float = 1.0,
    encoder_hidden_states: ms.Tensor = None,
    pooled_projections: ms.Tensor = None,
    timestep: ms.Tensor = None,
    img_ids: ms.Tensor = None,
    txt_ids: ms.Tensor = None,
    guidance: ms.Tensor = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    return_dict: bool = False,
) -> Union[ms.Tensor, Transformer2DModelOutput]:
    """
    The [`FluxTransformer2DModel`] forward method.

    Args:
        hidden_states (`ms.Tensor` of shape `(batch size, channel, height, width)`):
            Input `hidden_states`.
        controlnet_cond (`ms.Tensor`):
            The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
        controlnet_mode (`ms.Tensor`):
            The mode tensor of shape `(batch_size, 1)`.
        conditioning_scale (`float`, defaults to `1.0`):
            The scale factor for ControlNet outputs.
        encoder_hidden_states (`ms.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        pooled_projections (`ms.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
            from the embeddings of input conditions.
        timestep ( `ms.Tensor`):
            Used to indicate denoising step.
        block_controlnet_hidden_states: (`list` of `ms.Tensor`):
            A list of tensors that if specified are added to the residuals of transformer blocks.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `False`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    if joint_attention_kwargs is not None:
        joint_attention_kwargs = joint_attention_kwargs.copy()

    if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
        logger.warning(
            "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
        )
    hidden_states = self.x_embedder(hidden_states)

    if self.input_hint_block is not None:
        controlnet_cond = self.input_hint_block(controlnet_cond)
        batch_size, channels, height_pw, width_pw = controlnet_cond.shape
        height = height_pw // self.patch_size
        width = width_pw // self.patch_size
        controlnet_cond = controlnet_cond.reshape(
            batch_size, channels, height, self.patch_size, width, self.patch_size
        )
        controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
        controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
    # add
    hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)

    timestep = timestep.to(hidden_states.dtype) * 1000
    if guidance is not None:
        guidance = guidance.to(hidden_states.dtype) * 1000
    else:
        guidance = None
    temb = (
        self.time_text_embed(timestep, pooled_projections)
        if guidance is None
        else self.time_text_embed(timestep, guidance, pooled_projections)
    )
    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    if self.union:
        # union mode
        if controlnet_mode is None:
            raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
        # union mode emb
        controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
        encoder_hidden_states = ops.cat([controlnet_mode_emb, encoder_hidden_states], axis=1)
        txt_ids = ops.cat([txt_ids[:1], txt_ids], axis=0)

    if txt_ids.ndim == 3:
        logger.warning(
            "Passing `txt_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d torch Tensor"
        )
        txt_ids = txt_ids[0]
    if img_ids.ndim == 3:
        logger.warning(
            "Passing `img_ids` 3d ms.Tensor is deprecated."
            "Please remove the batch dimension and pass it as a 2d torch Tensor"
        )
        img_ids = img_ids[0]

    ids = ops.cat((txt_ids, img_ids), axis=0)
    image_rotary_emb = self.pos_embed(ids)

    block_samples = ()
    for index_block, block in enumerate(self.transformer_blocks):
        encoder_hidden_states, hidden_states = block(
            hidden_states=hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
        )
        block_samples = block_samples + (hidden_states,)

    hidden_states = ops.cat([encoder_hidden_states, hidden_states], axis=1)

    single_block_samples = ()
    for index_block, block in enumerate(self.single_transformer_blocks):
        hidden_states = block(
            hidden_states=hidden_states,
            temb=temb,
            image_rotary_emb=image_rotary_emb,
        )
        single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)

    # controlnet block
    controlnet_block_samples = ()
    for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
        block_sample = controlnet_block(block_sample)
        controlnet_block_samples = controlnet_block_samples + (block_sample,)

    controlnet_single_block_samples = ()
    for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
        single_block_sample = controlnet_block(single_block_sample)
        controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)

    # scaling
    controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
    controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]

    controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
    controlnet_single_block_samples = (
        None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
    )

    if not return_dict:
        return (controlnet_block_samples, controlnet_single_block_samples)

    return FluxControlNetOutput(
        controlnet_block_samples=controlnet_block_samples,
        controlnet_single_block_samples=controlnet_single_block_samples,
    )

mindone.diffusers.models.controlnet_flux.FluxControlNetModel.set_attn_processor(processor)

Sets the attention processor to use to compute attention.

PARAMETER DESCRIPTION
processor

The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention layers.

If processor is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.

TYPE: `dict` of `AttentionProcessor` or only `AttentionProcessor`

Source code in mindone/diffusers/models/controlnet_flux.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def set_attn_processor(self, processor):
    r"""
    Sets the attention processor to use to compute attention.

    Parameters:
        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
            The instantiated processor class or a dictionary of processor classes that will be set as the processor
            for **all** `Attention` layers.

            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
            processor. This is strongly recommended when setting trainable attention processors.

    """
    count = len(self.attn_processors.keys())

    if isinstance(processor, dict) and len(processor) != count:
        raise ValueError(
            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
        )

    def fn_recursive_attn_processor(name: str, module: nn.Cell, processor):
        if hasattr(module, "set_processor"):
            if not isinstance(processor, dict):
                module.set_processor(processor)
            else:
                module.set_processor(processor.pop(f"{name}.processor"))

        for sub_name, child in module.name_cells().items():
            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

    for name, module in self.name_cells().items():
        fn_recursive_attn_processor(name, module, processor)

mindone.diffusers.models.controlnet_flux.FluxControlNetOutput dataclass

Bases: BaseOutput

Source code in mindone/diffusers/models/controlnet_flux.py
35
36
37
38
@dataclass
class FluxControlNetOutput(BaseOutput):
    controlnet_block_samples: Tuple[ms.Tensor]
    controlnet_single_block_samples: Tuple[ms.Tensor]