IP-Adapter¶
IP-Adapter is a lightweight adapter that enables prompting a diffusion model with an image. This method decouples the cross-attention layers of the image and text features. The image features are generated from an image encoder.
Tip
Learn how to load an IP-Adapter checkpoint and image in the IP-Adapter loading guide, and you can see how to use it in the usage guide.
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin
¶
Mixin for handling IP Adapters.
Source code in mindone/diffusers/loaders/ip_adapter.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.load_ip_adapter(pretrained_model_name_or_path_or_dict, subfolder, weight_name, image_encoder_folder='image_encoder', **kwargs)
¶
PARAMETER | DESCRIPTION |
---|---|
pretrained_model_name_or_path_or_dict |
Can be either:
TYPE:
|
subfolder |
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as
TYPE:
|
weight_name |
The name of the weight file to load. If a list is passed, it should have the same length as
TYPE:
|
image_encoder_folder |
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass
TYPE:
|
cache_dir |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used.
TYPE:
|
force_download |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
TYPE:
|
proxies |
A dictionary of proxy servers to use by protocol or endpoint, for example,
TYPE:
|
local_files_only |
Whether to only load local model weights and configuration files or not. If set to
TYPE:
|
token |
The token to use as HTTP bearer authorization for remote files. If
TYPE:
|
revision |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.
TYPE:
|
Source code in mindone/diffusers/loaders/ip_adapter.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.set_ip_adapter_scale(scale)
¶
Set IP-Adapter scales per-transformer block. Input scale
could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Example:
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
# To use style block only
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style+layout blocks
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style and layout from 2 reference images
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
pipeline.set_ip_adapter_scale(scales)
Source code in mindone/diffusers/loaders/ip_adapter.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
|
mindone.diffusers.loaders.ip_adapter.IPAdapterMixin.unload_ip_adapter()
¶
Unloads the IP Adapter weights
Examples:
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
Source code in mindone/diffusers/loaders/ip_adapter.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
mindone.diffusers.image_processor.IPAdapterMaskProcessor
¶
Bases: VaeImageProcessor
Image processor for IP Adapter image masks.
PARAMETER | DESCRIPTION |
---|---|
do_resize |
Whether to downscale the image's (height, width) dimensions to multiples of
TYPE:
|
vae_scale_factor |
VAE scale factor. If
TYPE:
|
resample |
Resampling filter to use when resizing the image.
TYPE:
|
do_normalize |
Whether to normalize the image to [-1,1].
TYPE:
|
do_binarize |
Whether to binarize the image to 0/1.
TYPE:
|
do_convert_grayscale |
Whether to convert the images to grayscale format.
TYPE:
|
Source code in mindone/diffusers/image_processor.py
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
|
mindone.diffusers.image_processor.IPAdapterMaskProcessor.downsample(mask, batch_size, num_queries, value_embed_dim)
staticmethod
¶
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
PARAMETER | DESCRIPTION |
---|---|
mask |
The input mask tensor generated with
TYPE:
|
batch_size |
The batch size.
TYPE:
|
num_queries |
The number of queries.
TYPE:
|
value_embed_dim |
The dimensionality of the value embeddings.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
|
Source code in mindone/diffusers/image_processor.py
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
|