Utility¶
Logger¶
mindcv.utils.logger.set_logger(name=None, output_dir=None, rank=0, log_level=logging.INFO, color=True)
¶
Initialize the logger.
If the logger has not been initialized, this method will initialize the
logger by adding one or two handlers, otherwise the initialized logger will
be directly returned. During initialization, only logger of the master
process is added console handler. If output_dir
is specified, all loggers
will be added file handler.
PARAMETER | DESCRIPTION |
---|---|
name |
Logger name. Defaults to None to set up root logger.
TYPE:
|
output_dir |
The directory to save log.
TYPE:
|
rank |
Process rank in the distributed training. Defaults to 0.
TYPE:
|
log_level |
Verbosity level of the logger. Defaults to
TYPE:
|
color |
If True, color the output. Defaults to True.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Logger
|
logging.Logger: A initialized logger. |
Source code in mindcv/utils/logger.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
Callbacks¶
mindcv.utils.callbacks.StateMonitor
¶
Bases: Callback
Train loss and validation accuracy monitor, after each epoch save the best checkpoint file with the highest validation accuracy.
Source code in mindcv/utils/callbacks.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
|
mindcv.utils.callbacks.StateMonitor.apply_eval(run_context)
¶
Model evaluation, return validation accuracy.
Source code in mindcv/utils/callbacks.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
mindcv.utils.callbacks.StateMonitor.on_train_epoch_end(run_context)
¶
After epoch, print train loss and val accuracy, save the best ckpt file with the highest validation accuracy.
Source code in mindcv/utils/callbacks.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
|
mindcv.utils.callbacks.ValCallback
¶
Bases: Callback
Source code in mindcv/utils/callbacks.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
|
Train Step¶
mindcv.utils.train_step.TrainStep
¶
Bases: TrainOneStepWithLossScaleCell
Training step with loss scale.
The customized trainOneStepCell also supported following algorithms
- Exponential Moving Average (EMA)
- Gradient Clipping
- Gradient Accumulation
Source code in mindcv/utils/train_step.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
Trainer Factory¶
mindcv.utils.trainer_factory.create_trainer(network, loss, optimizer, metrics, amp_level, amp_cast_list, loss_scale_type, loss_scale=1.0, drop_overflow_update=False, ema=False, ema_decay=0.9999, clip_grad=False, clip_value=15.0, gradient_accumulation_steps=1)
¶
Create Trainer.
PARAMETER | DESCRIPTION |
---|---|
network |
The backbone network to train, evaluate or predict.
TYPE:
|
loss |
The function of calculating loss.
TYPE:
|
optimizer |
The optimizer for training.
TYPE:
|
metrics |
The metrics for model evaluation.
TYPE:
|
amp_level |
The level of auto mixing precision training.
TYPE:
|
amp_cast_list |
At the cell level, custom casting the cell to FP16.
TYPE:
|
loss_scale_type |
The type of loss scale.
TYPE:
|
loss_scale |
The value of loss scale.
TYPE:
|
drop_overflow_update |
Whether to execute optimizer if there is an overflow.
TYPE:
|
ema |
Whether to use exponential moving average of model weights.
TYPE:
|
ema_decay |
Decay factor for model weights moving average.
TYPE:
|
clip_grad |
whether to gradient clip.
TYPE:
|
clip_value |
The value at which to clip gradients.
TYPE:
|
gradient_accumulation_steps |
Accumulate the gradients of n batches before update.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
mindspore.Model |
Source code in mindcv/utils/trainer_factory.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|